Tamara Broderick Michael I. Jordan

Tamara Broderick Michael I. Jordan

Nonparametric Bayesian Methods Tamara Broderick Michael I. Jordan ITT Career Development Assistant Professor Pehong Chen Distinguished Professor EECS EECS, Statistics MIT UC Berkeley Nonparametric Bayesian Methods: Part I Tamara Broderick ITT Career Development Assistant Professor EECS MIT Nonparametric Bayes 1 Nonparametric Bayes • Bayesian 1 Nonparametric Bayes • Bayesian P(parameters data) P(data parameters)P(parameters) | / | 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [wikipedia.org] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) “Wikipedia phenomenon” [wikipedia.org] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [wikipedia.org] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Ed Bowlby, NOAA] [wikipedia.org] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Ed Bowlby, NOAA] [Fox et al 2014] [wikipedia.org] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Lloyd et al 2012; Miller et al 2010] [Ed Bowlby, NOAA] [Fox et al 2014] [wikipedia.org] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Lloyd et al 2012; Miller et al 2010] [Ed Bowlby, NOAA] [Fox et al 2014] [wikipedia.org] [Sudderth, Jordan 2009] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Lloyd et al 2012; Miller et al 2010] [Ed Bowlby, NOAA] [Fox et al 2014] [Ewens [wikipedia.org] 1972; Hartl, Clark 2003] [Sudderth, Jordan 2009] 1 Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Lloyd et al 2012; Miller et al 2010] [Ed Bowlby, NOAA] [Fox et al 2014] [Ewens [wikipedia.org] 1972; Hartl, Clark 2003] [Saria [Sudderth, et al Jordan 2009] 1 2010] Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Lloyd et al 2012; Miller et al 2010] [Ed Bowlby, NOAA] [Fox et al 2014] [Arjas, Gasbarra [Ewens [wikipedia.org] 1994] 1972; Hartl, Clark 2003] [Saria [Sudderth, et al Jordan 2009] 1 2010] Nonparametric Bayes • Bayesian P!(parameters data) P(data parameters)P(parameters) | / | • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters) [Lloyd et al 2012; Miller et al 2010] [Ed Bowlby, NOAA] [Fox et al 2014] [Arjas, Gasbarra [Ewens [wikipedia.org] 1994] 1972; Hartl, [Escobar, Clark West 1995; 2003] [Saria Ghosal [Sudderth, et al et al 1999] Jordan 2009] 1 2010] Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process • Big questions • Why NPBayes? • What does a growing/infinite number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? 2 Clustering 3 Clustering 4 Clustering 4 Clustering P(parameters data) P(data parameters)P(parameters) | / | 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 z iid Categorical(⇢ , ⇢ ) n ⇠ 1 2 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 iid zn Categorical(⇢1, ⇢2) ⇠indep x (µ , ⌃) n ⇠ N zn 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 iid zn Categorical(⇢1, ⇢2) ⇠indep x (µ , ⌃) n ⇠ N zn 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 ⇢ Beta(a ,a ) 1 ⇠ 1 2 ⇢2 =1 ⇢1 iid − zn Categorical(⇢1, ⇢2) ⇠indep x (µ , ⌃) n ⇠ N zn ⇢1 ⇢2 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 ⇢ Beta(a ,a ) 1 ⇠ 1 2 ⇢2 =1 ⇢1 iid − zn Categorical(⇢1, ⇢2) ⇠indep x (µ , ⌃) n ⇠ N zn ⇢1 ⇢2 4 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K=2 clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 ⇢ Beta(a ,a ) 1 ⇠ 1 2 ⇢2 =1 ⇢1 iid − zn Categorical(⇢1, ⇢2) ⇠indep x (µ , ⌃) n ⇠ N zn ⇢1 ⇢2 4 Beta distribution review ⇢1 (0, 1) Γ(a1 + a2) a1 1 a2 1 2 Beta(⇢1 a1,a2)= ⇢1 − (1 ⇢1) − a1,a2 > 0 | Γ(a1)Γ(a2) − 5 Beta distribution review ⇢1 (0, 1) Γ(a1 + a2) a1 1 a2 1 2 Beta(⇢1 a1,a2)= ⇢1 − (1 ⇢1) − a1,a2 > 0 | Γ(a1)Γ(a2) − density ρ1 5 Beta distribution review ⇢1 (0, 1) Γ(a1 + a2) a1 1 a2 1 2 Beta(⇢1 a1,a2)= ⇢1 − (1 ⇢1) − a1,a2 > 0 | Γ(a1)Γ(a2) − • What happens? density ρ1 5 Beta distribution review ⇢1 (0, 1) Γ(a1 + a2) a1 1 a2 1 2 Beta(⇢1 a1,a2)= ⇢1 − (1 ⇢1) − a1,a2 > 0 | Γ(a1)Γ(a2) − • What happens? a = a1 = a2 0 density a = a = a ! 1 2 !1 a1 >a2 ρ1 5 Beta distribution review ⇢1 (0, 1) Γ(a1 + a2) a1 1 a2 1 2 Beta(⇢1 a1,a2)= ⇢1 − (1 ⇢1) − a1,a2 > 0 | Γ(a1)Γ(a2) − • What happens? a = a1 = a2 0 density a = a = a ! 1 2 !1 a1 >a2 [demo] ρ1 5 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K clusters) 6 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K clusters) 6 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 6 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 ⇢ Dirichlet(a ) 1:K ⇠ 1:K ⇢1 ⇢2 ⇢3 6 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 ⇢ Dirichlet(a ) 1:K ⇠ 1:K z iid Categorical(⇢ ) n ⇠ 1:K ⇢1 ⇢2 ⇢3 6 Generative model P(parameters data) P(data parameters)P(parameters) | / | • Finite Gaussian mixture model (K clusters) µ iid (µ , ⌃ ) k ⇠ N 0 0 ⇢ Dirichlet(a ) 1:K ⇠ 1:K z iid Categorical(⇢ ) n ⇠ 1:K indep x (µ , ⌃) n ⇠ N zn ⇢1 ⇢2 ⇢3 6 Dirichlet distribution review K K Γ( k=1 ak) ak 1 Dirichlet(⇢1:K a1:K )= ⇢ − a > 0 | K k k k=1 Γ(ak) P kY=1 Q a = ak =1 a = ak 0 a = a ! k !1 7 Dirichlet distribution review K K Γ( k=1 ak) ak 1 Dirichlet(⇢1:K a1:K )= ⇢ − a > 0 | K k k kP=1 Γ(ak) k=1 Y ⇢k (0, 1) 2 Q ⇢k =1 Xk a = ak =1 a = ak 0 a = a ! k !1 7 Dirichlet distribution review K K Γ( k=1 ak) ak 1 Dirichlet(⇢1:K a1:K )= ⇢ − a > 0 | K k k kP=1 Γ(ak) k=1 Y ⇢k (0, 1) 2 Q ⇢k =1 k a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)X density ρ2 ρ1 7 Dirichlet distribution review K K Γ( k=1 ak) ak 1 Dirichlet(⇢1:K a1:K )= ⇢ − a > 0 | K k k kP=1 Γ(ak) k=1 Y ⇢k (0, 1) 2 Q ⇢k =1 k a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)X density ρ2 ρ1 • What happens? a = ak =1 a = ak 0 a = ak ! [demo]!1 7 So far K << N. What if not? • e.g. species sampling, topic modeling, groups on a social network, etc. … ⇢1 ⇢2 ⇢3 ⇢1000 • Components: number of latent groups • Clusters: number of components represented in the data • Number of clusters for N data points is < K and random • Number of clusters grows with N 8 So far K << N. What if not? … ⇢1 ⇢2 ⇢3 ⇢1000 • Components: number of latent groups • Clusters: number of components represented in the data • Number of clusters for N data points is < K and random • Number of clusters grows with N 8 So far K << N. What if not? • e.g. species sampling, topic modeling, groups on a social network, etc. … ⇢1 ⇢2 ⇢3 ⇢1000 • Components: number of latent groups • Clusters: number of components represented in the data • Number of clusters for N data points is < K and random • Number of clusters grows with N 8 So far K << N.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    114 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us