Dirac Brackets in Geometric Dynamics Annales De L’I

Dirac Brackets in Geometric Dynamics Annales De L’I

<p>ANNALES DE L’I. H. P., SECTION A </p><p>´</p><p>JEDRZEJ SNIATYCKI </p><p>Dirac brackets in geometric dynamics </p><p>Annales de l’I. H. P., section A, tome&nbsp;20, n<sup style="top: -0.2793em;">o </sup>4 (1974), p. 365-372 </p><p>&lt;<a href="/goto?url=http://www.numdam.org/item?id=AIHPA_1974__20_4_365_0" target="_blank">http://www.numdam.org/item?id=AIH</a><a href="/goto?url=http://www.numdam.org/item?id=AIHPA_1974__20_4_365_0" target="_blank">P</a><a href="/goto?url=http://www.numdam.org/item?id=AIHPA_1974__20_4_365_0" target="_blank">A</a><a href="/goto?url=http://www.numdam.org/item?id=AIHPA_1974__20_4_365_0" target="_blank">_1974__20_4_365_0</a>&gt; </p><p>© Gauthier-Villars, 1974, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (<a href="/goto?url=http://www.numdam.org/conditions" target="_blank">http://www.numdam. </a><a href="/goto?url=http://www.numdam.org/conditions" target="_blank">org/conditions</a>). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. </p><p>Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques </p><p><a href="/goto?url=http://www.numdam.org/" target="_blank">http://www.numdam.org/ </a></p><p>Ann. Inst. Henri </p><p>Section A : </p><p>Poincaré, </p><p>Vol. </p><p>n° </p><p>365 </p><p>XX, </p><p>4, 1974, </p><p>Physique théorique. </p><p>in </p><p>Dirac brackets </p><p>geometric dynamics </p><p>015ANIATYCKI </p><p>Jedrzej </p><p>of </p><p>The </p><p>Canada. </p><p>Alberta, </p><p>University </p><p>Calgary, </p><p>of Mathematics </p><p>Statistics and </p><p>Science </p><p>Department </p><p>Computing </p><p>is formulated in the </p><p>of of constraints in </p><p>ABSTRACT. </p><p>framework of </p><p>- Theory </p><p>symplectic </p><p>dynamics </p><p>Geometric </p><p>significance </p><p>secondary </p><p>of Dirac </p><p>Global existence </p><p>geometry. </p><p>is </p><p>constraints and of Dirac brackets </p><p>given. </p><p>brackets is </p><p>proved. </p><p>1. </p><p>INTRODUCTION </p><p>The <sup style="top: 0.01em;">successes </sup>of the canonical </p><p>of </p><p>with </p><p>quantization </p><p>the </p><p>dynamical systems </p><p>a</p><p>finite number of </p><p>of </p><p>of </p><p>freedom, </p><p>degrees </p><p>necessity </p><p>quan- </p><p>gravi- </p><p>theory </p><p>experimental </p><p>of </p><p>of the </p><p>field </p><p>tization </p><p>and the </p><p>that </p><p>electrodynamics, </p><p>hopes </p><p>quantization </p><p>could resolve </p><p>in </p><p>quantum </p><p>tational field </p><p>difficulties encountered </p><p>of the </p><p>have </p><p>to </p><p>rise </p><p>canonical structure of </p><p>given </p><p>thorough investigation </p><p>field theories. It has been found that the </p><p>formu- </p><p>cases </p><p>standard Hamiltonian </p><p>most </p><p>lation of </p><p>of </p><p>is </p><p>in the </p><p>dynamics </p><p>inadequate </p><p>and </p><p>physically </p><p>interesting </p><p>dueto existence of </p><p>constraints. Methods </p><p>electrodynamics </p><p>gravitation </p><p>with constraints have been </p><p>of </p><p>with </p><p>several </p><p>by </p><p>developed </p><p>dealing </p><p>dynamics </p><p>authors and </p><p>it </p><p>has been realized that the standard Hamiltonian </p><p>dynamics </p><p>can be formulated in terms of constraints </p><p>(1). </p><p>has </p><p>been </p><p>a</p><p>mathematical </p><p>The aim of </p><p>of constraints </p><p>Hamiltonian </p><p>dynamics </p><p>given </p><p>very elegant </p><p>formulation in the framework of </p><p>a</p><p>(2). </p><p>theory </p><p>symplectic geometry </p><p>this </p><p>in </p><p>is to </p><p>formulation of the </p><p>paper </p><p>give </p><p>symplectic </p><p>As </p><p>a</p><p>result the </p><p>of the classification of </p><p>geometric </p><p>and of Dirac brackets is </p><p>dynamics. </p><p>significance </p><p>Further, </p><p>the </p><p>of </p><p>constraints </p><p>given. </p><p>globalization </p><p>See refs. </p><p>the references </p><p>there. </p><p>and </p><p>[4], [5], [6], </p><p>quoted </p><p>C) </p><p>[2], [3], </p><p>[8] </p><p>See </p><p>refs. </p><p>and </p><p>[1] </p><p>[9]. </p><p>(~) </p><p>eg. </p><p>Henri Poincaré - </p><p>de l’Institut </p><p>Section A - </p><p>n° 4 - </p><p>1974. </p><p>XX, </p><p>Annales </p><p>vol. </p><p>366 </p><p>JEDRZEJ SNIATYCKI </p><p>theresults discussedin theliteraturein termsof local coordinatesis obtained. </p><p>the fundamental </p><p>with </p><p>notion </p><p>constraints </p><p>is that </p><p>As in the case of the Hamiltonian </p><p>dynamics, </p><p>of </p><p>in the </p><p>dynamical systems </p><p>geometric analysis </p><p>of </p><p>a</p><p>manifold. Basic </p><p>of </p><p>manifolds are </p><p>symplectic </p><p>properties </p><p>symplectic </p><p>reviewed in Section 2. </p><p>a</p><p>with <sup style="top: 0.01em;">constraints </sup>can </p><p>be </p><p>constraint </p><p>A</p><p>dynamical system </p><p>represented by </p><p>a</p><p>submanifold of </p><p>is described </p><p>and </p><p>manifold. </p><p>constraint </p><p>Therefore, </p><p>symplectic </p><p>dynamics </p><p>manifold </p><p>a</p><p>a</p><p>where </p><p>is </p><p>M, </p><p>by </p><p>triplet (P, </p><p>P, </p><p>of canonical </p><p>(P, cv) </p><p>symplectic </p><p>M</p><p>is </p><p>a</p><p>submanifold of </p><p>which is called </p><p>a</p><p>canonical </p><p>Ele- </p><p>system [12]. </p><p>their relations to </p><p>and the </p><p>mentary properties </p><p>with </p><p>systems, </p><p>Lagrangian </p><p>a</p><p>relation </p><p>between </p><p>cano- </p><p>systems </p><p>nical </p><p>homogeneous Lagrangians, </p><p>and its reduced </p><p>phase space </p><p>are </p><p>in Section 3. </p><p>discussed </p><p>system </p><p>4</p><p>Section </p><p>contains a</p><p>of </p><p>constraints. The </p><p>discussion </p><p>secondary </p><p>genera- </p><p>lization of Dirac classification of constraints is </p><p>in Section 5. Sec- </p><p>given </p><p>tion </p><p>6</p><p>is devoted to an </p><p>ofthe </p><p>of </p><p>Dirac brac- </p><p>analysis </p><p>of </p><p>their </p><p>geometric significance </p><p>a</p><p>kets and </p><p>existence. </p><p>proof </p><p>global </p><p>2. </p><p>SYMPLECTIC MANIFOLDS </p><p>P</p><p>is </p><p>a</p><p>manifold </p><p>and <sup style="top: 0.01em;">OJ </sup></p><p>manifold is </p><p>a</p><p>where </p><p>A</p><p>a</p><p>(3) </p><p>pair (P, OJ) </p><p>symplectic symplectic </p><p>form on <sup style="top: 0.02em;">P. </sup>The most </p><p>of </p><p>a</p><p>is </p><p>important example </p><p>symplectic </p><p>of </p><p>is furnished </p><p>in this case </p><p>the structure of the </p><p>manifold in </p><p>by </p><p>space </p><p>dynamics </p><p>system, </p><p>bracket. </p><p>phase </p><p>P</p><p>the </p><p>and <sup style="top: 0.01em;">cv </sup>is the </p><p>a</p><p>represents </p><p>phase space </p><p>dynamical </p><p>Lagrange </p><p>be </p><p>a</p><p>manifold </p><p>a</p><p>function on <sup style="top: 0.02em;">P. </sup>There exists </p><p>Let </p><p>(P, OJ) </p><p>symplectic </p><p>and </p><p>f</p><p>such </p><p>form </p><p>a</p><p>vector field </p><p>called the Hamiltonian vector field </p><p>unique </p><p>that </p><p>of f, </p><p>J</p><p>~ = 2014 </p><p>d f, </p><p>where </p><p>and </p><p>J</p><p>denotes </p><p>the left interior </p><p>are Hamiltonian vector fields </p><p>of a</p><p>product </p><p>v f </p><p>avector field. It </p><p>by </p><p>correspond- </p><p>v f </p><p>vg </p><p>and </p><p>then their Lie brackets </p><p>is </p><p>to functions </p><p>ing </p><p>f</p><p>g, respectively, </p><p>[v f’ ~] </p><p>the Hamiltonian vector field </p><p>to the Poisson bracket </p><p>and the Jacobi </p><p>corresponding </p><p>( f, g) </p><p>for </p><p>Further, </p><p>( f, </p><p>g) </p><p>an </p><p>identity </p><p>of f and <sup style="top: -0.01em;">g. </sup></p><p>~(~) = 2014 vg( f ), </p><p>the Poisson brackets is </p><p>immediate </p><p>of </p><p>the Jacobi </p><p>that <sup style="top: 0.01em;">6D </sup>is </p><p>consequence </p><p>identity </p><p>of </p><p>fields and the </p><p>closed. </p><p>for the Lie bracket </p><p>vector </p><p>assumption </p><p>3. </p><p>CANONICAL SYSTEMS </p><p>- Acanonical </p><p>is </p><p>a</p><p>where </p><p>DEFINITION </p><p>symplectic </p><p>3 . l. </p><p>M, </p><p>(P, OJ) </p><p>(P, </p><p>triplet </p><p>cv) </p><p>system </p><p>a</p><p>submanifold of P. </p><p>M</p><p>is </p><p>a</p><p>manifold and </p><p>is </p><p>one </p><p>from the </p><p>if </p><p>Canonical </p><p>Lagrangian dynamics </p><p>and </p><p>passes </p><p>systems appear </p><p>All </p><p>manifolds </p><p>considered in this </p><p>are finite </p><p>dimensional, </p><p>(3) </p><p>paper </p><p>paracompact </p><p>of class C ". </p><p>Annales </p><p>de l’Institut Henri </p><p>Poincaré - Section </p><p>A</p><p>DIRAC BRACKETS IN </p><p>DYNAMICS </p><p>367 </p><p>GEOMETRIC </p><p>with </p><p>to the </p><p>canonical </p><p>of </p><p>systems </p><p>dynamics </p><p>homogeneous Lagrangians. </p><p>Let </p><p>L</p><p>be </p><p>a</p><p>one </p><p>a</p><p>on </p><p>a</p><p>conical </p><p>X. function of </p><p>defined </p><p>homogeneous </p><p>degree </p><p>domain </p><p>We denote </p><p>D</p><p>of the </p><p>TX of </p><p>bundle </p><p>tangent </p><p>space </p><p>configuration space </p><p>transformation </p><p>FL : D - T*X the </p><p>by </p><p>Legendre </p><p>given by </p><p>for </p><p>the fibre derivative of </p><p>L</p><p>and </p><p>0</p><p>the Liouville form on T*X </p><p>defined, </p><p>is the </p><p>by </p><p>E</p><p>where n : T*X -~ </p><p>X</p><p>a</p><p>each v </p><p>bundle </p><p>by </p><p>p(Tn(v)) </p><p>cotangent </p><p>canonical </p><p>TpT*X, </p><p>The </p><p>is </p><p>FL, </p><p>(T*X, </p><p>de) </p><p>system </p><p>projection. </p><p>triplet </p><p>range </p><p>submanifold ofT*X. </p><p>canonical There are two subsets </p><p>FL </p><p>be </p><p>is </p><p>a</p><p>range </p><p>provided </p><p>a</p><p>Let </p><p>(P, </p><p>TPM </p><p>K</p><p>and </p><p>N</p><p>M, </p><p>co) </p><p>system. </p><p>of </p><p>associated to </p><p>as </p><p>follows: </p><p>M, </p><p>(P, </p><p>co) </p><p>and </p><p>N=KnTM. </p><p>N</p><p>is called the characteristic set </p><p>for </p><p>canonical </p><p>of </p><p>M. The </p><p>The set </p><p>w</p><p>dynamical signifi- </p><p>cance of </p><p>N</p><p>a</p><p>obtained from </p><p>a</p><p>FL, </p><p>(T*X, range </p><p>homogeneous Lagrangian </p><p>d0) </p><p>system </p><p>with </p><p>on </p><p>X</p><p>a</p><p>L</p><p>is </p><p>given by </p><p>Lagrangian system </p><p>the </p><p>following. </p><p>the </p><p>3 . 2. </p><p>- A curve </p><p>in </p><p>X</p><p>satisfies </p><p>if </p><p>PROPOSITION </p><p>Lagrange-Euler equa- </p><p>where <sub style="top: 0.15em;">y </sub>denotes </p><p>only FL. , </p><p>y</p><p>L</p><p>and </p><p>tions </p><p>the </p><p>to the </p><p>corresponding </p><p>prolongation </p><p>Lagrangian </p><p><sup style="top: 0.01em;">is </sup>an </p><p>this </p><p>curve of N. Proof of </p><p>of to </p><p>TX, </p><p>integral </p><p>propo- </p><p>sition is </p><p>in the reference </p><p>and it will be omitted. </p><p>given </p><p>[11] </p><p>system </p><p>for </p><p>a</p><p>of </p><p>M</p><p>which can be </p><p>canonical </p><p>Thus, </p><p>connected </p><p>M, </p><p>(P, </p><p>points </p><p>curves of </p><p>N</p><p>are related in </p><p>a</p><p>by integral </p><p>be </p><p>physically meaningfull </p><p>related </p><p>time </p><p>evolution as </p><p>a</p><p>in </p><p>3.2 or </p><p>manner; </p><p>they may </p><p>by </p><p>Proposition </p><p>the maximal </p><p>can be </p><p>a</p><p>transformation. </p><p>E</p><p>by </p><p>gauge </p><p>Therefore, </p><p>M, </p><p>given </p><p>point </p><p>p</p><p>N</p><p>manifold of </p><p>it </p><p>exists, </p><p>integral </p><p>as the </p><p>p, </p><p>through </p><p>provided </p><p>interpreted </p><p>of </p><p>history </p><p>p. </p><p>if </p><p>N</p><p>is </p><p>a</p><p>DEFINITION </p><p>3 . 3. </p><p>A</p><p>canonical </p><p>is </p><p>M, </p><p>(P, </p><p>w) </p><p>regular </p><p>system </p><p>of TM. </p><p>be </p><p>and since cv is closed </p><p>subbundle </p><p>a</p><p>subbundle </p><p>Frobenius </p><p>a</p><p>canonical </p><p>Then </p><p>N</p><p>is </p><p>Let </p><p>M, </p><p>(P, </p><p>cv) </p><p>regular </p><p>system. </p><p>is also involutive. </p><p>of </p><p>N</p><p>TM, </p><p>theorem </p><p>Hence, </p><p>unique </p><p>by </p><p>each </p><p>E</p><p>M</p><p>is contained in </p><p>a</p><p>maximal </p><p>(4), </p><p>point </p><p>p</p><p>integral </p><p>manifold of N. Let P~ denote the </p><p>set of </p><p>M</p><p>the </p><p>quotient </p><p>by </p><p>equivalence </p><p>relation defined </p><p>maximal </p><p>manifolds of </p><p>that is each element </p><p>N, </p><p>described </p><p>dynamical </p><p>system </p><p>by </p><p>a</p><p>integral </p><p>of the </p><p>in P~ </p><p>our </p><p>cano- </p><p>represents </p><p>history </p><p>by </p><p>M ~ </p><p>Pr denote the canonical </p><p>nical </p><p>and let </p><p>M, </p><p>(P, </p><p>system </p><p>p : </p><p>projec- </p><p>submersion </p><p>M</p><p>P~ admits </p><p>a</p><p>a</p><p>tion. If </p><p>then there exists </p><p>differentiable structure such that </p><p>is </p><p>p</p><p>a</p><p>formwr on <sup style="top: 0.01em;">P~ </sup>such that </p><p>unique symplectic </p><p>w</p><p>The </p><p>manifold </p><p>called the </p><p>to </p><p>of </p><p>is </p><p>reduced </p><p>(Pr, </p><p>symplectic </p><p>wr) </p><p>phase space </p><p>on Pr </p><p>constants of </p><p>Functions </p><p>M, </p><p>(P, </p><p>CD). </p><p>correspond </p><p>(gauge invariant) </p><p>in <sup style="top: 0.01em;">the </sup>manner <sup style="top: 0.01em;">described </sup></p><p>and </p><p>cvr </p><p>rise to their Poisson </p><p>motion, </p><p>algebra </p><p>gives </p><p>in </p><p>2</p><p>Section </p><p>(5). </p><p>All theorems on <sup style="top: 0.01em;">differentiable </sup>manifolds used in this </p><p>can be found </p><p>in ref. </p><p>(~) (~) </p><p>paper </p><p>[7]. </p><p>This Poisson </p><p>was <sup style="top: 0.01em;">first </sup>studied </p><p>in ref. </p><p>[2]. </p><p>algebra </p><p>Vol. </p><p>n° 4 - 1974. </p><p>XX, </p><p>JEDRZEJ SNIATYCKI </p><p>368 </p><p>4. </p><p>CONSTRAINTS </p><p>SECONDARY </p><p>on </p><p>In </p><p>If </p><p>is not </p><p>points </p><p>then </p><p>dim </p><p>on which dim </p><p>e M. </p><p>open </p><p>(P, M, </p><p>regular </p><p>p</p><p>p</p><p>cv) </p><p>depends </p><p>particular </p><p>Np </p><p>the <sup style="top: 0.01em;">set </sup>S° of </p><p>E</p><p>M</p><p>0</p><p><sup style="top: 0.01em;">is </sup>an </p><p>submanifold </p><p>inadmissible </p><p>Np </p><p>S° as </p><p>of </p><p>if it is not </p><p>this set </p><p>M, </p><p>Discarding </p><p>physically </p><p>constraints </p><p>here. Consider the class ofall manifolds </p><p>empty. </p><p>[3] </p><p>have lead Dirac </p><p>to the notion of </p><p>secondary </p><p>generalization </p><p>M</p><p>ofwhich is </p><p>given </p><p>n<br>Y</p><p>dim </p><p>contained in </p><p>and </p><p>Y’ </p><p>such that TY </p><p>N</p><p>is </p><p>a</p><p>subbundle </p><p>of </p><p>TY </p><p>allow here </p><p>(we </p><p>order in this class defined as follows </p><p>Y</p><p>0), </p><p>Y</p><p>let </p><p>denote the </p><p>partial </p><p>if </p><p>and </p><p>if </p><p>Y</p><p>is </p><p>a</p><p>of Y’. </p><p>follows from Zorn’s lemma that </p><p>submanifold </p><p>It </p><p>only </p><p>there </p><p>to </p><p>the </p><p>exist maximal manifolds in </p><p>class. </p><p>we are lead </p><p>this </p><p>Thus, </p><p>following. </p><p>DEFINITION </p><p>4.1. </p><p>A</p><p>constraint manifold of </p><p>a</p><p>canonical </p><p>secondary </p><p>maximal manifold </p><p>is </p><p>a<br>S</p><p>contained in </p><p>M</p><p>such that </p><p>N</p><p>n</p><p>TS </p><p>M, </p><p>(P, </p><p>cv) </p><p>system </p><p>a</p><p>is </p><p>subbundle of TS </p><p>(6). </p><p>S</p><p>be </p><p>submanifold </p><p>cannot use Frobeniustheoremto define the reduced </p><p>a</p><p>constraint manifold of </p><p>If </p><p>S</p><p>is not an </p><p>Let </p><p>M, </p><p>secondary </p><p>of </p><p>(P, </p><p>be involutive. </p><p>open </p><p>one </p><p>case </p><p>M</p><p>then </p><p>n</p><p>TS need not </p><p>N</p><p>In this </p><p>If </p><p>N</p><p>n</p><p>TS </p><p>phase space. </p><p>relation, </p><p>equivalence </p><p>maximal </p><p>manifolds <sup style="top: 0.01em;">define </sup>an </p><p>is involutive its </p><p>and let </p><p>integral </p><p>set of </p><p>denote the </p><p>S</p><p>relation. </p><p>that the </p><p>that there </p><p>this </p><p>by </p><p>such </p><p>N</p><p>quotient </p><p>differentiable structure on </p><p>Ps </p><p>Suppose </p><p>a</p><p>exists </p><p>tion </p><p>canonical </p><p>Ps </p><p>projec- </p><p>S - </p><p>is </p><p>then </p><p>a</p><p>submersion. </p><p>Since </p><p>of<sub style="top: 0.16em;">OJ </sub>M </p><p>is the characteristic set </p><p>TS is contained in the characteristic set </p><p>ps : </p><p>Ps </p><p>n</p><p>and </p><p>N</p><p>TS c </p><p>TM, </p><p>Ns </p><p></p><ul style="display: flex;"><li style="flex:1">of </li><li style="flex:1">defined </li></ul><p></p><p>there exists </p><p>non- </p><p>Therefore </p><p>The form </p><p>the reduced </p><p>OJ </p><p>unique </p><p>S</p><p>by </p><p>03C9rS </p><p>only </p><p>constraint </p><p>and </p><p>a</p><p>2-form </p><p>on </p><p></p><ul style="display: flex;"><li style="flex:1">such that </li><li style="flex:1">S</li></ul><p></p><p>is </p><p>Ps </p><p>N</p><p>03C1*S03C9rS. </p><p>03C9rS </p><p>if </p><p>and </p><p>if </p><p>n</p><p>TS </p><p>manifold </p><p>Thus, </p><p>a</p><p>degenerate </p><p>Ns. </p><p>S</p><p>phase space </p><p>Ps </p><p>ofthe </p><p>has </p><p>natural </p><p>structure </p><p>secondary </p><p>of a symplec- </p><p>if </p><p>if </p><p>TS </p><p>n</p><p>N</p><p>tic manifold </p><p>If this condition </p><p>and </p><p>if </p><p></p><ul style="display: flex;"><li style="flex:1">S</li><li style="flex:1">holds </li></ul><p></p><p>only </p><p>then the structure </p><p>Ns. </p><p>is </p><p>a</p><p>submanifold of </p><p>Sa</p><p>of </p><p>as </p><p>all </p><p>as </p><p>constraint </p><p>canonical </p><p>P, </p><p>OJ) </p><p>secondary </p><p>manifold of </p><p>is </p><p>the </p><p>same </p><p>that of </p><p>cases </p><p>a</p><p>M, </p><p>(P, </p><p>cv). </p><p>exactly </p><p>regular </p><p>This situation </p><p>we </p><p>in </p><p>of </p><p>in </p><p>interest </p><p>S, </p><p>system (P, </p><p>appears </p><p>physics, </p><p>regular </p><p>therefore in the </p><p>shall limit </p><p>our considerations to </p><p>following </p><p>canonical </p><p>systems. </p><p>5. </p><p>A</p><p>CLASS OF </p><p>CANONICAL </p><p>SYSTEM </p><p>on </p><p>a</p><p>first </p><p>M</p><p>be a</p><p>canonical </p><p>A</p><p>function </p><p>P</p><p>is </p><p>called </p><p>Let </p><p>M, </p><p>(P, </p><p>OJ) </p><p>system. </p><p>f</p><p>on </p><p>function constant </p><p>if its Poisson bracket with </p><p>zero on M. This condition </p><p>class function </p><p>every </p><p>can </p><p>be reformulated as follows: </p><p>is </p><p>identically </p><p>This definition is </p><p>a</p><p>of the </p><p>in ref. </p><p>definition </p><p>(~) </p><p>globalization </p><p>[10]. </p><p>given </p><p>Annales de I’Institut Henri </p><p>A</p><p>Poincaré - Section </p><p>369 </p><p>DIRAC BRACKETS IN </p><p>for each v </p><p>GEOMETRIC DYNAMICS </p><p>which </p><p>P</p><p>if </p><p>and </p><p>E</p><p>on </p><p>0. Functions </p><p>first class </p><p>if, </p><p>K, </p><p>v(f) </p><p>only </p><p>f is </p><p>are </p><p>constraint </p><p>not first class are called second class functions. Since the </p><p>a</p><p>M<sub style="top: 0.02em;">can </sub></p><p>P - dim </p><p>be </p><p>described </p><p>of </p><p>system </p><p>submanifold </p><p>0, </p><p>apply </p><p>locally </p><p>by </p><p>equations </p><p>the notion ofa <sup style="top: 0.02em;">class </sup>can be </p><p>extended </p><p>f (p) </p><p>to </p><p>i</p><p>M, </p><p>1, ..., dim </p><p>a</p><p>canonical </p><p>system. regular </p><p>a</p><p>canonical </p><p>is </p><p>the </p><p>5.1. - Class of </p><p>DEFINITION </p><p>of </p><p>M, </p><p>by </p><p>(P, </p><p>regular </p><p>system </p><p>dim K - dim </p><p>N, </p><p>(dim </p><p>N) </p><p><sub style="top: 0.17em;">locally </sub>M </p><p>(’). </p><p>integers </p><p>pair </p><p>If </p><p>a</p><p>is ofclass </p><p>then </p><p>..., </p><p>can </p><p>be described </p><p>system </p><p>where all </p><p>(P, M,cv) </p><p>(n, k) </p><p>1, </p><p>of </p><p>i</p><p>n and </p><p>0, </p><p>1, ..., k, </p><p>equationsf (p) </p><p>0, j </p><p>are first class andall </p><p>are second </p><p>and </p><p>class, </p><p>it </p><p>cannot </p><p>functions £. </p><p>functions gj </p><p>be described </p><p>tions. If k </p><p>of </p><p>with more than n first class func- </p><p>by any system </p><p>equations </p><p>0</p><p>we <sup style="top: 0.01em;">call </sup></p><p>M</p><p>a</p><p>first class submanifold of </p><p>as <sup style="top: 0.01em;">it </sup>can be </p><p>(P, OJ) </p><p>a</p><p>of </p><p>i</p><p>where all </p><p>second </p><p>class </p><p>0, </p><p>1, ..., n, </p><p>locally by </p><p>system </p><p>equations </p><p>f (p) </p><p>given </p><p>if n </p><p>M</p><p>is called </p><p>a</p><p>a</p><p>are first class. </p><p>0, </p><p>Similarly, </p><p>functions f </p><p>of </p><p>In </p><p><sup style="top: 0.01em;">this </sup>case </p><p>is </p><p>submanifold </p><p>manifold. </p><p>(P, </p><p>(M, </p><p>OJM) </p><p>symplectic </p><p>two theorems which we </p><p>hold </p><p>shall </p><p>later. </p><p>need </p><p>There </p><p>For </p><p>PROPOSITION 5.2. </p><p>canonical </p><p>M, </p><p>any regular </p><p>(P, </p><p>co), </p><p>system </p><p>N</p><p>is an even number. </p><p>dim K - dim </p><p>M -dim N. </p><p>even </p><p>P~ </p><p>dim </p><p>K</p><p>dim P -dim </p><p>M</p><p>and dim </p><p>dim </p><p>forms </p><p>dim </p><p>Proof. </p><p>dim P~ are </p><p>and </p><p>P</p><p>Since both </p><p>P</p><p>and P~ admit </p><p>symplectic </p><p>is even. </p><p>P - dim P~ </p><p>numbers. </p><p>K - dim </p><p>N</p><p>dim </p><p>dim </p><p>Hence, </p><p>a</p><p>5 . 3. </p><p>Let </p><p>be </p><p>canonical </p><p>system </p><p>j’ and g </p><p>of </p><p>PROPOSITION </p><p>M, </p><p>regular </p><p>(P, </p><p>class </p><p>with </p><p>k</p><p>&amp;#x3E; </p><p>0. </p><p>there exist two functions </p><p>such </p><p>that </p><p>Then, </p><p>(n, lc) </p><p>For each </p><p><sub style="top: 0.01em;">E </sub>M </p><p>there exists </p><p>on </p><p>a</p><p>of in </p><p>P</p><p>and </p><p>0</p><p>M’ </p><p>Proof - </p><p>p</p><p>neighbourhood </p><p>p</p><p>Up </p><p>two functions </p><p>and </p><p>such that </p><p>n</p><p><sub style="top: 0.25em;">gp</sub>Mn </p><p>M</p><p>fp </p><p>fp </p><p>of </p><p>Up </p><p>gp </p><p>Up </p><p>Up </p><p>and </p><p>n</p><p>we </p><p>1. </p><p>associate to the </p><p>Further, </p><p>M</p><p>complement </p><p>( fp, </p><p>gp) </p><p>Up </p><p>of the </p><p>M</p><p>in </p><p>P</p><p>and </p><p>to </p><p>closure </p><p>functions<sub style="top: 0.16em;">f ’ </sub></p><p>covering </p><p>zero. This </p><p>there </p><p>g’ equal identically </p><p>we </p><p>and since </p><p>of </p><p>P</p><p>have obtained </p><p>a</p><p>of </p><p>is </p><p>paracompact, </p><p>P, </p><p>way </p><p>a</p><p>this </p><p>exists </p><p>finite </p><p>and </p><p>For each </p><p>a</p><p>of </p><p>locally </p><p>covering </p><p>}. </p><p>partition </p><p>refinement { </p><p>to the </p><p>such </p><p>we have two </p><p>subordinated </p><p>on </p><p>Ua </p><p>Ua </p><p>unity { </p><p>functions </p><p>covering { </p><p>that </p><p>and g03B1 </p><p>U (1 </p><p><sup style="top: -0.17em;">Let</sup>f </p><p>g</p><p>follows, </p><p>and </p><p>be </p><p>P</p><p>defined </p><p>as </p><p><sup style="top: 0.01em;">functions </sup>on </p><p>for each </p><p>Then, </p><p>is </p><p>to W. M. </p><p>due </p><p>This definition </p><p>(7) </p><p>Tulczyjew </p><p>(unpublished). </p><p>Vol. </p><p>n° 4 - 1974. </p><p>XX, </p><p>JEDRZEJ SNIATYCKI </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us