Scattering Parameters

Scattering Parameters

Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 1 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 2 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 1 General Network Formulation V + I + 1 1 Z Port Voltages and Currents 0,1 I − − + − + − 1 V I V = V +V I = I + I 1 1 k k k k k k V1 port 1 + + V2 I2 I2 V2 Z + N-port 0,2 – port 2 Network − − V2 I2 + VN – I Characteristic (Port) Impedances port N N + − + + VN I N Vk Vk Z0,k = = − + − Z0,N Ik Ik − − VN I N Note: all current components are defined positive with direction into the positive terminal at each port 3 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Impedance Matrix I1 ⎡V1 ⎤ ⎡ Z11 Z12 Z1N ⎤ ⎡ I1 ⎤ + V1 Port 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V2 Z21 Z22 Z2N I2 ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ I2 + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ V2 Port 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V Z Z Z I N-port ⎣ N ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ Network I N [V]= [Z][I] V + Port N N + - V Port i i,oc- Open-Circuit Impedance Parameters Port j Ij N-port Vi,oc Zij = Network I j Port N Ik =0 for k≠ j 4 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 2 Admittance Matrix I1 ⎡ I1 ⎤ ⎡Y11 Y12 Y1N ⎤ ⎡V1 ⎤ + V1 Port 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - I2 Y21 Y22 Y2N V2 ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ I2 + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ V2 Port 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - I Y Y Y V N-port ⎣ N ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ Network I N [I]= [Y][V] V + Port N N - Ii,sc Port i Short-Circuit Admittance Parameters _+ Port j Vj N-port Ii,sc Yij = Network V j Port N Vk =0 for k≠ j 5 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 The Scattering Matrix The scattering matrix relates incident and reflected voltage waves at the network ports as (assume Z 0 ,n = Z 0 ): − + ⎡V1 ⎤ ⎡ S11 S12 S1N ⎤ ⎡V1 ⎤ ⎢ − ⎥ ⎢ ⎥ ⎢ + ⎥ V S S S V − + ⎢ 2 ⎥ = ⎢ 21 22 2N ⎥ ⎢ 2 ⎥ or [V ] =[S][V ] ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + + V1 I1 ⎢ − ⎥ ⎢ ⎥ ⎢ + ⎥ Z0,1 ⎢VN ⎥ ⎣SN1 SN 2 SNN ⎦ ⎢VN ⎥ ⎣ ⎦ ⎣ ⎦ I1 V − I − V 1 1 1 + with voltage and current at port n: –port 1 + + V2 I2 + − I2 V2 + Vn = Vn +Vn Z N-port 0,2 – + ! port 2 Network − − In = In + In V2 I2 + VN + ! – I = (Vn !Vn ) Z0 port N N + + VN I N Note: S-parameters depend on port impedances Z Z Z0,N 0,n = 0 V − I − N N 6 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 3 The Scattering Matrix The scattering matrix relates incident and reflected voltage waves at the network ports as (assume Z 0 ,n = Z 0 ): − + ⎡V1 ⎤ ⎡ S11 S12 S1N ⎤ ⎡V1 ⎤ ⎢ − ⎥ ⎢ ⎥ ⎢ + ⎥ V S S S V − + ⎢ 2 ⎥ = ⎢ 21 22 2N ⎥ ⎢ 2 ⎥ or [V ] =[S][V ] ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + + V1 I1 ⎢ − ⎥ ⎢ ⎥ ⎢ + ⎥ Z0,1 ⎢VN ⎥ ⎣SN1 SN 2 SNN ⎦ ⎢VN ⎥ ⎣ ⎦ ⎣ ⎦ I1 V − I − Interpretation? V 1 1 1 + with voltage and current at port n: –port 1 + + V2 I2 + − I2 V2 + Vn Power= Vn +Vn relationships?Z N-port 0,2 – + ! port 2 Network − − In = In + In V2 I2 + VN + ! – I = (Vn !Vn ) Z0 port N N + + VN I N Note: S-parameters depend on port impedances Z Z Z0,N 0,n = 0 V − I − N N 7 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Transmission Line Basics Lossless Transmission Line + + V2 V1 0 z V − V − Z0,1 1 2 Z0,2 + + _+ + E1 V Z , ! = "l V _ E - 1 0 2 - 2 Port 1 Port 2 + ! + ! j!z ! + j!z + ! V1 = V1 +V1 V(z) = V0 e +V0 e V2 = V2 +V2 I = I + + I ! + ! 1 1 1 + ! j!z ! + j!z I2 = I2 + I2 I(z) = I0 e + I0 e Phase Constant: ! = " LC L V + V ! Characteristic Impedance: 0 0 Z0 = = + = ! ! C I0 I0 8 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 4 Net Power Flow on Lossless Line V − I(z') 0 ΓL = + V0 + Z0 = R0 (real) Z γ = jβ V(z') Z 0 – L z' 0 + + jβz' − jβz' V (z') = V0 (e + ΓLe ) + V0 + jβz' − jβz' I(z') = (e − ΓLe ) Z0 2 + * V 2 P (z) 1 Re V(z) I(z) 0 #1 % const. ave = 2 { ( ) } = $ ! "L & = 2R0 9 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Generalized Scattering Parameters considerations and definitions V + E ! ! 0 − + Z0 V V = I 2 + − _+ Z Z E 0 V L V Z L − Z0 - Γ = + = V Z L + Z0 ! Z L + + − − V = E V = Z0 I V = −Z0 I Z L + Z0 + − + − V = V +V I I I 1 = + + 1 E V = 2 ( + Γ) − Z V 0 + 1 + + * I + 1 P = 2 Re{V (I ) } V = 2 (V + Z0 I ) + _+ Z 2 E V L 1 + − 1 = 2 V R0 V = 2 (V − Z0 I ) - = Pmax (assuming Z0 is real Z0 = R0) 10 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 5 Normalized Wave Quantities § It is useful to express power P without characteristic impedance (port impedance) Z0 = R0 (but P still depends on R0) + 2 V + 1 + + * 1 + a = P = 2 Re{V (I ) }= 2 V R0 R0 − 2 V − 1 − − * 1 − b = P = − 2 Re{V (I ) }= 2 V R0 R0 a 2 2 R b + − 0 I V V P = P+ − P− = − + L 2R 2R _+ Z 0 0 E V L - 1 2 2 = 2 {a − b } (assuming real Z0) 11 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Scattering Matrix R0,1 I1 + E _+ Port 1 b S S S a 1 V1 ⎡ 1 ⎤ ⎡ 11 12 1N ⎤ ⎡ 1 ⎤ - ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ N-port b S S S a ⎢ 2 ⎥ = ⎢ 21 22 2N ⎥ ⎢ 2 ⎥ R0,2 I2 Network ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ _+ b S S S a E2 V Port 2 ⎣ 2 ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ - 2 R bi 0,N IN S = ij a + + j E _ V Port N ak =0 for k≠ j N - N − Vi R0,i Vi R0,i Sij = = (i ≠ j) E j (2 R0, j ) E j (2 R0, j ) Ek =0 for all k≠ j Ek =0 for all k ≠ j 12 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 6 Scattering Parameters 2 Physical meaning of Sij ( Z 0 = R 0 = real) − 2 Pi actual power leavingport i Sij = = (i ≠ j) E =0 Pmax, j Ek =0 maximumpower fromport j k k≠ j k≠ j R I 2 0,1 1 + Physical meaning of S V Port 1 jj - 1 N-port − bj V j R0, j ZL, j − R0, j Network S R0,j I jj = = + = j a j ak =0 V j R0, j ZL, j + R0, j + Port j E +_ V k≠ j j j- ZL,j 2 R + − 0,N IN PL, j = Pj − Pj = Pmax 1− S jj + { } Port N V - N 13 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Relation to Z-Matrix Impedance matrix: ⎡ Z11 Z1N ⎤ with Z ⎢ ⎥ V = Z I = ⎢ ⎥ ⎢Z Z ⎥ Express V,I in terms of a and b ⎣ N1 NN ⎦ 1/ 2 −1/ 2 −1 R0 (a + b) = Z R0 (a − b) b = (Zn + U) (Zn − U)a −1/ 2 −1/ 2 with normalized impedance matrix Zn = R0 Z R0 ( Z 0 = R 0 = real) ⎡ R0,1 0 0 ⎤ ⎢ ⎥ −1 and port impedance matrix R1/ 2 0 0 −1/2 1/2 0 = ⎢ ⎥ R0 = (R0 ) ⎢ 0 0 R ⎥ ⎣ 0,N ⎦ −1 −1 S = (Zn + U) (Zn − U)= (Zn − U)(Zn + U) 14 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 7 Scattering Parameters § Port n is said to be matched when it is terminated with a load having the same impedance as the port impedance Z0,n. § Often, all port impedances are chosen to be equal and Z0,n = 50 Ω. § The values of the scattering (S-) parameters depend on the chosen port impedances. § S-parameters can be algebraically renormalized to different and unequal port impedances. (see later) 15 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Two-Port Networks Insertion and Return Loss Z 0,1 ⎡S11 S12 ⎤ _+ E ⎢ ⎥ Z0,2 ⎣S21 S22 ⎦ RL IL Return Loss indicates the extend of mismatch in a network in dB port 1: RL = −20 log10 S11 in dB Insertion Loss measure of transmitted fraction of power in dB from port 1 to port 2: IL = −20 log10 S21 in dB 16 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 8 Example Lossless Transmission Line: + + V2 V1 V − V − Z0,1 1 2 Z0,2 + + _+ + E1 V Z V _ E - 1 0 θ 2 - 2 Port 1 Port 2 If Z0,1 = Z0,2 = Z0, the scattering parameters can be easily obtained by inspection: − jθ S11 = S22 = 0 S12 = S21 = e ⎡1 0⎤ ⎡ 0 e− jθ ⎤ [U] [S] ± = ± ⎢ j ⎥ 1 ⎢0 1⎥ e− θ 0 − ⎣ ⎦ ⎣ ⎦ [Z] = Z0 ([U]+[S])([U]−[S]) = 1 j j − jθ − Z ⎡ 1 e− θ ⎤⎡ 1 e− θ ⎤ −1 ⎡ 1 − e ⎤ 0 [U ]−[S] = = − j2θ ⎢ − jθ ⎥⎢ − jθ ⎥ = ( ) ⎢ − jθ ⎥ 1− e e 1 e 1 ⎣− e 1 ⎦ ⎣ ⎦⎣ ⎦ − j2θ − jθ − jθ Z ⎡1+ e 2e ⎤ ⎡ − jZ0 cotθ − jZ0 sinθ ⎤ 1 ⎡ 1 e ⎤ = 0 = = j2 − j2θ ⎢ − jθ − j2θ ⎥ ⎢ ⎥ − θ ⎢ − jθ ⎥ 1− e 2e 1+ e − jZ0 sinθ − jZ0 cotθ 1− e ⎣e 1 ⎦ ⎣ ⎦ ⎣ ⎦ 17 Prof.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us