Tidal Deformation of Planets and Satellites: Models and Methods for Laser- and Radar Altimetry

Tidal Deformation of Planets and Satellites: Models and Methods for Laser- and Radar Altimetry

Tidal Deformation of Planets and Satellites: Models and Methods for Laser- and Radar Altimetry vorgelegt von Diplom Physiker Gregor Steinbr¨ugge geb. in Berlin von der Fakult¨atVI { Planen Bauen Umwelt der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Vorsitzender: Prof. Dr. Dr. h.c. Harald Schuh Gutachter: Prof. Dr. J¨urgenOberst Gutachter: Prof. Dr. Nicolas Thomas Gutachter: Prof. Dr. Tilman Spohn Tag der wissenschaftlichen Aussprache: 27.03.2018 Berlin 2018 2 Contents Title Page 1 Contents 3 List of Figures 7 List of Tables 9 1 Introduction 15 1.1 Structure of the Dissertation . 16 1.1.1 Icy Satellites . 17 1.1.2 Mercury . 20 1.2 Theory of Tides . 21 1.2.1 Tidal Potentials . 21 1.2.2 Response of Planetary Bodies to Tidal Forces . 23 1.3 Measuring Tidal Deformations . 25 1.3.1 Measurement Concepts . 25 1.3.2 Laser Altimetry . 25 1.3.3 Radar Altimetry . 26 1.4 Missions and Instruments . 27 1.4.1 REASON and the Europa Clipper Mission . 27 1.4.2 GALA and the JUICE Mission . 28 1.4.3 BELA and the BepiColombo Mission . 29 2 Research Paper I 31 2.1 Introduction . 32 2.2 Instrument Performance Modeling . 32 2.2.1 Link Budget . 32 2.2.2 Signal-to-Noise Ratio . 33 2.3 Expected Science Performance . 37 2.3.1 Topographic Coverage . 37 2.3.2 Slope and Roughness . 37 2.4 Tidal Deformation . 40 2.4.1 Covariance Analysis . 40 2.4.2 Numerical Simulation . 41 2.5 Discussion . 42 2.6 Conclusion . 43 Bibliography 43 3 3 Research Paper II 47 3.1 Introduction . 48 3.2 Methods . 48 3.2.1 Structural Models . 49 3.2.2 Rheological Models . 51 3.3 Results . 53 3.3.1 Tidal Love Numbers . 53 3.3.2 Inner Core Radius . 53 3.3.3 Phase-lags . 54 3.4 Discussion and Conclusion . 56 Bibliography 57 4 Research Paper III 61 4.1 Introduction . 62 4.2 Method and Model Description . 62 4.2.1 Ganymede Tides . 62 4.2.2 Instrument and Mission Setup . 63 4.2.3 General Model Description . 63 4.2.4 Instrument Performance Model . 65 4.2.5 Spacecraft Pointing Error . 65 4.2.6 Other Error Sources . 66 4.2.7 Numerical Simulation . 66 4.3 Application and Results for the GALA Experiment . 66 4.3.1 Measurement Error . 66 4.3.2 Implication on the Ice Thickness . 67 4.4 Discussion . 68 4.4.1 Operation Scenario . 68 4.4.2 Dependence on the Slope Distribution . 69 4.4.3 Ambiguity in the Structural Model . 69 4.4.4 Linear Combination of h2 and k2 ....................... 69 4.4.5 The Elastic Case vs. the Visco-elastic Case . 70 4.5 Conclusion . 71 Bibliography 71 5 Research Paper IV 75 5.1 Introduction . 76 5.2 Instrument Description and Measurement Principle . 76 5.3 Radar Altimetric Performance . 78 5.3.1 Signal to Noise Ratio . 78 5.3.2 Geometric Performance Model . 79 5.3.3 Point Target Simulator . 80 5.3.4 Influence of the Ionosphere . 81 5.4 Tidal Inversion . 82 5.5 Implications for Europa's Interior . 83 5.6 Discussion . 83 5.7 Conclusion . 85 Bibliography 85 4 6 Discussion 87 7 Synthesis 93 A Tidal Potential of Mercury 95 A.1 Second Order Eccentricity . 95 A.2 Mathematica Notebook . 97 Bibliography 99 Bibliography 99 113Acknowledgments 113 5 6 List of Figures 2.1 BELA PFD as a function of altitude . 35 2.2 BELA range error as a function of altitude . 37 2.3 BELA topographic coverage after two years of operation . 38 2.4 BELA's return pulse width measurement accuracy . 39 2.5 Mercury's surface roughness as derived from DTM data . 41 3.1 Mercury structural model . 52 3.2 Mercurys inner core size as a function of tidal Love numbers . 55 3.3 Mercury's Love numbers as a function of tidal phase-lag . 56 4.1 Maximum and measurable tidal double amplitudes on Ganymede . 65 4.2 Contours of decadic logarithm of the SNR as a function of spacecraft altitude and surface roughness. 67 4.3 PFD vs. surface roughness . 67 4.4 Ganymede h2 vs. ice thickness . 68 4.5 Expected error of the Ganymede h2 measurement . 69 4.6 Love number h2 in dependence of Ganymede's outer ice shell thickness . 70 4.7 Linear combination of k2 and h2 in dependence of Ganymede's outer ice thickness. 70 5.1 Delay / Doppler principle . 77 5.2 REASON range error estimates . 81 5.3 17F12v2 ground tracks with cross-over locations . 82 5.4 Tidal Love numbers as a function of structural models of Europa . 84 6.1 Time varying orbital eccentricity of Europa . 89 6.2 Reconstruction of Europa's global shape using REASON altimetry . 90 7 8 List of Tables 1.1 List of publications included in this thesis . 16 2.1 BELA instrument parameters. 36 2.2 Cross-over observable error budget calculated for a rms roughness of 12.1 m at 200 m baseline, 6.4 m at 50 m baseline and an albedo of 0:19. 42 3.1 Parameters used for Mercury's core . 50 3.2 Rheologic parameters used in the computation of the tidal Love numbers. 54 4.1 Ganymede equilibrium and gravity parameters . 63 4.2 Comparison between the BELA and assumed GALA instrument parameters . 64 4.3 GALA error contributions . 67 4.4 GALA error budget . 68 4.5 Reference model of Ganymede's interior structure . 68 4.6 Slope dependence of the error budget . 69 4.7 Constraints for the structural Ganymede models . 70 5.1 DTM data sets used to derive Europa's surface roughness . 80 5.2 Estimated REASON range error and Europa h2 accuracy . 83 5.3 Interior structure parameters of Europa . 84 6.1 Comparison of the estimated measurement results of the three instruments stud- ied in this thesis. 87 A.1 G2mq coefficients according to Kaula (1964). 96 9 10 Abstract In this thesis, methods are developed and studied for radar and laser altimetry.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    114 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us