Properties of K- Fibonacci and K- Lucas Octonions

Properties of K- Fibonacci and K- Lucas Octonions

Indian J. Pure Appl. Math., 50(4): 979-998, December 2019 °c Indian National Science Academy DOI: 10.1007/s13226-019-0368-x PROPERTIES OF k-FIBONACCI AND k-LUCAS OCTONIONS A. D. Godase Department of Mathematics, V. P. College Vaijapur, Aurangabad 423 701, (MH), India e-mail: [email protected] (Received 9 April 2018; after final revision 18 July 2018; accepted 18 October 2018) We investigate some binomial and congruence properties for the k-Fibonacci and k-Lucas hyper- bolic octonions. In addition, we present several well-known identities such as Catalan’s, Cassini’s and d’Ocagne’s identities for k-Fibonacci and k-Lucas hyperbolic octonions. Key words : Fibonacci sequence; k-Fibonacci sequence; k-Lucas sequence. 1. INTRODUCTION The Fibonacci and Lucas sequences are generalised by changing the initial conditions or changing the recurrence relation. The k-Fibonacci sequence is the generalization of the Fibonacci sequence, which is first introduced by Falcon and Plaza [2]. The k-Fibonacci sequence is defined by the numbers which satisfy the second order recurrence relation Fk;n = kFk;n¡1+Fk;n¡2 with the initial conditions Fk;0 = 0 and Fk;1 = 1. Falcon [3] defined the k-Lucas sequence that is companion sequence of k- Fibonacci sequence defined with the k-Lucas numbers which are defined with the recurrence relation Lk;n = kLk;n¡1 + Lk;n¡2 with the initial conditions Lk;0 = 2 and Lk;1 = k. Binet’s formulas for the k-Fibonacci and k-Lucas numbers are n n r1 ¡ r2 Fk;n = r1 ¡ r2 and n n Lk;n = r1 + r2 p p k+ k2+4 k¡ k2+4 respectively, where r1 = 2 and r2 = 2 are the roots of the characteristic equation 2 x ¡ kx ¡ 1 = 0. The characteristic roots r1 and r2 satisfy the properties p p 2 r1 ¡ r2 = k + 4 = ±, r1 + r2 = k, r1r2 = ¡1: 980 A. D. GODASE The reader can refer to [1, 4-9] for properties and applications of k- Fibonacci and k- Lucas numbers. The quaternions are generalized numbers. The quaternions first introduced by Irish mathemati- cian William Rowan Hamilton in 1843. Hamilton [10] introduced the set of quaternions form a 4-dimensional real vector space with a multiplicative operation. The quaternions are used in applied sciences such as physics, computer science and Clifford algebras in mathematics. In particular, they are important in mechanics [11], chemistry [12], kinematics [13], quantum mechanics [14], differ- ential geometry and pure algebra. A quaternion a, with real components a0, a1, a2, a3 and basis 1; i; j; k, is an element of the form ­ ® a = a0 + a1i + a2j + a3k = a0; a1; a2; a3 ; where i2 = j2 = k2 = ijk = ¡1; ij = k = ¡ji; jk = i = ¡kj; ki = j = ik: Horadam [15] defined the nth Fibonacci and nth Lucas quaternions as ­ ® F¯n = Fn + Fn+1i + Fn+2j + Fn+3k = Fn;Fn+1;Fn+2;Fn+3 and ­ ® L¯n = Ln + Ln+1i + Ln+2j + Ln+3k = Ln;Ln+1;Ln+2;Ln+3 respectively. Ramirez [16] has defined and studied the k-Fibonacci and k-Lucas quaternions as ­ ® Fk;n¯ = Fk;n + Fk;n+1i + Fk;n+2j + Fk;n+3k = Fk;n;Fk;n+1;Fk;n+2;Fk;n+3 and ­ ® L¯k;n = Lk;n + Lk;n+1i + Lk;n+2j + Lk;n+3k = Lk;n;Lk;n+1;Lk;n+2;Lk;n+3 th th respectively, where Fk;n is the n k-Fibonacci sequence and Lk;n is the n k-Lucas sequence. Different quaternions of sequences have been studied by different researchers. For example, Iyer [17, 18] obtained various relations containing the Fibonacci and Lucas quaternions. Halici [19] studied some combinatorial properties of Fibonacci quaternions. Akyigit et al. [20, 21] established PROPERTIES OF k-FIBONACCI AND k-LUCAS OCTONIONS 981 and investigated the Fibonacci generalized quaternions and split Fibonacci quaternions. Catarino [22] obtained different properties of the h(x)-Fibonacci quaternion polynomials. Polatli and Kesim [23] have introduced quaternions with generalized Fibonacci and Lucas number components. Hyperbolic k-Fibonacci and k-Lucas Quaternions ­ ® A hyperbolic quaternion h is an expression of the form h = h1i1+h2i2+h3i3+h4i4 = h1; h2; h3; h4 ; with real components h1, h2, h3, h4 and i1; i2; i3; i4 are hyperbolic quaternionic units that satisfy the non-commutative multiplication rules 2 2 2 i2 = i3 = i4 = i2i3i4 = +1; i1 = 1; i2i3 = i4 = ¡i3i2; i3i4 = i2 = ¡i4i3; i4i2 = i3 = ¡i2i4: ¡! The scalar and the vector part of a hyperbolic quaternion h are denoted by Sh = h1 and V h = ¡! h2i2 + h3i3 + h4i4, respectively. Thus, a hyperbolic quaternion h is given by h = Sh + V h. For any (1) (1) (1) (1) (1) (2) (2) (2) two hyperbolic quaternions h = h1 i1 + h2 i2 + h3 i3 + h4 i4 and h = h1 i1 + h2 i2 + (2) (2) h3 i3 + h4 i4. Addition and subtraction of the hyperbolic quaternions is defined by (1) (2) ¡ (1) (1) (1) (1) ¢ h § h = h1 i1 + h2 i2 + h3 i3 + h4 i4 ¡ (2) (2) (2) (2) ¢ § h1 i1 + h2 i2 + h3 i3 + h4 i4 ¡ (1) (2)¢ ¡ (1) (2)¢ ¡ (1) (2)¢ ¡ (1) (2)¢ ¢ = h1 § h1 i1 + h2 § h2 i2 + h3 § h3 i3 + h4 § h4 i4 Multiplication of the hyperbolic quaternions is defined by (1) (2) ¡ (1) (1) (1) (1) ¢ h ¢ h = h1 i1 + h2 i2 + h3 i3 + h4 i4 ¡ (2) (2) (2) (2) ¢ ¢ h1 i1 + h2 i2 + h3 i3 + h4 i4 ¡ (1) (2) (1) (2) (1) (2) (1) (2)¢ = h1 h1 + h2 h2 + h3 h3 + h4 h4 ¡ (1) (2) (1) (2) (1) (2) (1) (2)¢ + h1 h2 + h2 h1 + h3 h4 ¡ h4 h3 i2 ¡ (1) (2) (1) (2) (1) (2) (1) (2)¢ + h1 h3 ¡ h2 h4 + h3 h1 + h4 h2 i3 ¡ (1) (2) (1) (2) (1) (2) (1) (2)¢ + h1 h4 + h2 h3 ¡ h3 h2 + h4 h1 i4: The conjugate of hyperbolic quaternion h is denoted by h¯ and it is ­ ® h¯ = h1i1 ¡ h2i2 ¡ h3i3 ¡ h4i4 = h1; ¡h2; ¡h3; ¡h4 : The norm of h is defined as ¯ 2 2 2 2 Nh = h ¢ h = h1 ¡ h2 ¡ h3 ¡ h4 : 982 A. D. GODASE F L In [24], the hyperbolic k-Fibonacci and k-Lucas quaternions Q k;n and Q k;n are defined as F Q k;n = Fk;ni1 + Fk;n+1i2 + Fk;n+2i3 + Fk;n+3i4 ­ ® = Fk;n;Fk;n+1;Fk;n+2;Fk;n+3 and L Q k;n = Lk;ni1 + Lk;n+1i2 + Lk;n+2i3 + Lk;n+3i4 ­ ® = Lk;n;Lk;n+1;Lk;n+2;Lk;n+3 ; th th respectively, where Fk;n is n k-Fibonacci sequence and Lk;n is n k- Lucas sequence. Here, i1, i2, i3, i4 are hyperbolic quaternionic units which satisfy the multiplication rule 2 2 2 i2 = i3 = i4 = i2i3i4 = +1; i1 = 1; i2i3 = i4 = ¡i3i2; i3i4 = i2 = ¡i4i3; i4i2 = i3 = ¡i2i4: The Binet formulas for the hyperbolic k-Fibonacci and k-Lucas quaternions are n n F r¯1r1 ¡ r¯2r2 Q k;n = ; r1 ¡ r2 and L n n Q k;n =r ¯1r1 +r ¯2r2 where, 2 3 ­ 2 3® r¯1 = i1 + r1i2 + r1 i3 + r1 i4 = 1; r1; r1 ; r1 ; 2 3 ­ 2 3® r¯2 = i1 + r2i2 + r2 i3 + r2 i4 = 1; r2; r2 ; r2 ; and i1, i2, i3, i4 are hyperbolic quaternionic units. Different properties of the hyperbolic k-Fibonacci and k-Lucas quaternions are investigated in [24], some of these are F F F (1) Q k;n+2 = kQ k;n+1 + Q k;n; L L L (2) Q k;n+2 = kQ k;n+1 + Q k;n; L F L (3) Q k;n = Q k;n+1 + Q k;n¡1; ¡ ¢ X1 F L F F n Q k;0 + Q k;0Fk;t ¡Q k;t x (4) Q k;tnx = 2 t ; 1 ¡ xLk;t + x (¡1) n=0 ¡ ¢ X1 QL ¡ QL L ¡QL x (5) QL xn = k;0 k;0 k;t k;t ; k;tn 1 ¡ xL + x2(¡1)t n=0 k;t PROPERTIES OF k-FIBONACCI AND k-LUCAS OCTONIONS 983 X1 QF + (¡1)txQF (6) QF xn = k;s s;s¡t ; k;tn+s 1 ¡ xL + x2(¡1)t n=0 k;t X1 QL + (¡1)txQL (7) QL xn = k;s s¡t ; k;tn+s 1 ¡ xL + x2(¡1)t n=0 k;t 1 t t X QF r¯ er1 x ¡ r¯ er2 x (8) k;tn xn = 1 2 ; n! r ¡ r n=0 1 2 X1 L Q k;tn t t (9) xn =r ¯ er1 x +r ¯ er2 x; n! 1 2 n=0 µ ¶ Xn n (10) kiQF = QF ; i k;i k;2n i=0 µ ¶ Xn n (11) kiQL = QL ; i k;i k;2n i=0 F F F 2 n¡t ¡ (12) Q k;n¡tQ k;n+t ¡Q k;n = (¡1) Fk;t 0; ¡2Fk;t+1; ¡2Fk;t+2; ¢ ¡ 2Fk;t+3 + Fk;t¡3 + Fk;t+1 + Fk;t¡1 ; L L L 2 n¡t+1 ¡ (13) Q k;n¡tQ k;n+t ¡Q k;n = ±(¡1) Fk;t 0; ¡2Fk;t+1; ¡2Fk;t+2; ¢ ¡ 2Fk;t+3 + Fk;t¡3 + Fk;t+1 + Fk;t¡1 ; F F F 2 n¡ ¢ (14) Q k;n¡1Q k;n+1 ¡Q k;n = (¡1) 0; ¡2Fk;2; 2Fk;3;Fk;4 ; L L L 2 n¡1¡ ¢ (15) Q k;n¡1Q k;n+1 ¡Q k;n = ±(¡1) 0; ¡2Fk;2; 2Fk;3;Fk;4 ; F F F F n¡ (16) Q k;tQ k;n+1 ¡Q k;t+1Q k;n = (¡1) 0; ¡2Fk;t¡n¡1; 2Fk;t¡n¡2; ¢ Fk;t¡n+3 + Fk;t¡n¡3 + Fk;t¡n+1 + Fk;t¡n¡1 ; L L L L n+1 ¡ (17) Q k;tQ k;n+1 ¡Q k;t+1Q k;n = (¡1) ± 0; ¡2Fk;t¡n¡1; 2Fk;t¡n¡2; ¢ Fk;t¡n+3 + Fk;t¡n¡3 + Fk;t¡n+1 + Fk;t¡n¡1 ; 2 2 2 2(k + 5) (18) QF + QL = QL + ±(k2 + 5)L k;t k;t k k;2t k;2t+3 (k2 + 3)¡ ¢ + 2(¡1)t QL ¡ 2 ; ± k;0 2 2 2 2(k + 3) (19) QF ¡QL = QL + (k2 + 3)(k2 + 2)L k;t k;t ± k;2t k;2t+3 (k2 + 5)¡ ¢ + 2(¡1)t+1 QL ¡ 2 ; ± k;0 F L F L r+t¡ L ¢ (20) Q k;r+sQ k;r+t ¡Q k;r+tQ k;r+s = 2(¡1) Q k;0 ¡ 2 Fk;s¡t; F t F F (21) Q k;s+t + (¡1) Q k;s¡t = Q k;sLk;t; L t L L (22) Q k;s+t + (¡1) Q k;s¡t = Q k;sLk;t; F F F F s ¡ ¢ (23) Q k;sQ k;t ¡Q k;tQ k;s = 2(¡1) Fk;t¡s 0; ¡1; ¡k; 1 ; L L L L s+1 ¡ ¢ (24) Q k;sQ k;t ¡Q k;tQ k;s = 2(¡1) Fk;t¡s± 0; ¡1; ¡k; 1 ; 984 A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us