GALLIUM OXIDE METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR ANALYTICAL MODELING and POWER TRANSISTOR DESIGN TRADES By

GALLIUM OXIDE METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR ANALYTICAL MODELING and POWER TRANSISTOR DESIGN TRADES By

GALLIUM OXIDE METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR ANALYTICAL MODELING AND POWER TRANSISTOR DESIGN TRADES by Neil Austin Moser A Dissertation Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Electrical and Computer Engineering Committee: _________________________________ Dr. Nathalia Peixoto, Dissertation Director _________________________________ Dr. Qiliang Li, Committee Member _________________________________ Dr. Yuri Mishin, Committee Member _________________________________ Dr. Gregg Jessen, Committee Member _________________________________ Dr. Monson Hayes, Department Chair _________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School of Engineering Date:_____________________________ Fall Semester 2017 George Mason University Fairfax, VA Gallium Oxide Metal Oxide Semiconductor Field Effect Transistor Analytical Modeling and Power Transistor Design Trades A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University by Neil Austin Moser Master of Science George Mason University, 2013 Bachelor of Science University of Michigan-Ann Arbor, 2002 Director: Nathalia Peixoto, Professor Department of Electrical and Computer Engineering Fall Semester 2017 George Mason University Fairfax, VA Copyright 2017 Neil Austin Moser All Rights Reserved ii DEDICATION This is dedicated to my father, Gary Moser, who started me on the path to being an academic before I even really knew what that was and still encourages me to not be ignorant about anything to this day. iii ACKNOWLEDGEMENTS I would like to thank my wife, Morgan, and daughter, Schaefer, for putting up with me “working” on this for quite a long time. Also, I would like to thank my committee, especially Gregg Jessen who helped me find this exciting research and shepherded me the whole way and Nathalia Peixoto who put up with a lot of dead ends and redirections in topic along the way. I would like to thank everyone on the Air Force Research Laboratory gallium oxide and lab teams who loaned me a few of their exciting projects and helped me with everything from test equipment training to stepper lithography exposures to editing of journal papers. I would also like to acknowledge the SMART scholarship for service program which funded the last three years of schooling toward this final goal. iv TABLE OF CONTENTS Page List of Tables .................................................................................................................... vii List of Figures .................................................................................................................. viii List of Equations ............................................................................................................. xvii List of Author Publications .............................................................................................. xxi List of Abbreviations and Symbols................................................................................ xxiii Abstract .......................................................................................................................... xxiv 1. Power semiconductor introduction .............................................................................. 1 Wide Bandgap Semiconductor Materials ........................................................................ 2 Power Applications and Figures of Merit ....................................................................... 7 Dissertation Layout ....................................................................................................... 15 2. Gallium Oxide Material Background............................................................................ 17 Gallium Oxide Polymorphs ....................................................................................... 17 β-Ga2O3 Material Properties ...................................................................................... 21 Substrate Growth ....................................................................................................... 30 Ga2O3 Epitaxy............................................................................................................ 33 Doping Ga2O3 ............................................................................................................ 38 Materials Comparison................................................................................................ 40 3. Gallium Oxide Devices ................................................................................................. 42 Early Development .................................................................................................... 42 β-Ga2O3 MOSFETs ................................................................................................... 45 β-Ga2O3 Material Interfaces (MOSCAPs and SBDs) ................................................ 49 β-Ga2O3 Material Improvements ............................................................................... 54 Similar Devices.......................................................................................................... 56 β-Ga2O3 Device Summary ......................................................................................... 71 4. Analytical modelIng of gallium oxide Mosfets ............................................................ 73 Power and RF device Modeling Types ...................................................................... 73 v GaN and Si Analytical Models .................................................................................. 76 Analytical Model for β-Ga2O3 MOSFETs ................................................................. 78 5. Model verification and improvements .......................................................................... 86 Doping Variation of β-Ga2O3 MOSFETs .................................................................. 86 Channel Thickness Variation of β-Ga2O3 MOSFETs ............................................... 94 Gate Oxide Variation of β-Ga2O3 MOSFETs.......................................................... 100 β-Ga2O3 MOSFET Thermal Variations ................................................................... 104 6. Model Implications and Limitations ........................................................................... 114 Optimal Device Performance .................................................................................. 114 Achieving Enhancement Mode β-Ga2O3 MOSFETs .............................................. 121 β-Ga2O3 MOSFETs Scaling .................................................................................... 124 β-Ga2O3 MOSFET Model Limitations .................................................................... 128 7. Future Gallium Oxide Research .................................................................................. 138 Vertical Ga2O3 FETs ............................................................................................... 138 β-Ga2O3 Heterojunction Field Effect Transistors .................................................... 141 8. Summary and Conclusion ........................................................................................... 145 Appendix A: Python code for Bandstructure .................................................................. 151 Appendix B: VerilogA Code for Access Resistors ......................................................... 155 Appendix C: VerilogA Code For Drain Current............................................................. 157 References ...................................................................................................................... 159 vi LIST OF TABLES Table Page Table 1 Sumary of the different crystal polymorphs of Ga2O3 and their known material properties........................................................................................................................... 21 Table 2 Basic crystal structures of important power semiconductor materials. ............... 21 Table 3 Summary of Ga2O3 donors with a comparison of lattice match to the substituted gallium atom. .................................................................................................................... 39 Table 4 A summary of material parameters and figures of merit for various wide-bandgap semiconductors. Figures of merit are normalized to Silicon. All materials are n-type with the exception of diamond which has only demonstrated p-type devices. ......................... 41 Table 5 Summary of insulators used for the gate insulator in β-Ga2O3 capacitors or transistors. The band offsets are in reference to the conduction band and valence band of β-Ga2O3. ............................................................................................................................ 53 Table 6 A summary of published β-Ga2O3 FETs developed for power electronic applications. ...................................................................................................................... 72 Table 7 Sample summary of β-Ga2O3 MOSFETs with different doping concentrations. 86 Table 8 Parameter values used for analytical model of β-Ga2O3 MOSFETs. .................. 92 Table 9 Sample summary of β-Ga2O3 MOSFETs with different channel thickness and the same target doping concentration. ...................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    197 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us