The Orthogonal Planes Split of Quaternions and Its Relation to Quaternion Geometry of Rotations

The Orthogonal Planes Split of Quaternions and Its Relation to Quaternion Geometry of Rotations

<p><a href="/goto?url=http://iopscience.iop.org/" target="_blank">Home </a><a href="/goto?url=http://iopscience.iop.org/search" target="_blank">Search </a><a href="/goto?url=http://iopscience.iop.org/collections" target="_blank">Collections </a><a href="/goto?url=http://iopscience.iop.org/journals" target="_blank">Journals </a><a href="/goto?url=http://iopscience.iop.org/page/aboutioppublishing" target="_blank">About </a><a href="/goto?url=http://iopscience.iop.org/contact" target="_blank">Contact us</a><a href="/goto?url=http://iopscience.iop.org/contact" target="_blank">&nbsp;</a><a href="/goto?url=http://iopscience.iop.org/myiopscience" target="_blank">My IOPscience </a></p><p>The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations </p><p>This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 J. Phys.: Conf. Ser. 597 012042 (http://iopscience.iop.org/1742-6596/597/1/012042) </p><p>View <a href="/goto?url=http://iopscience.iop.org/1742-6596/597/1" target="_blank">the table of contents for this issue</a>, or go to the <a href="/goto?url=http://iopscience.iop.org/1742-6596" target="_blank">journal homepage </a>for more </p><p>Download details: IP Address: 131.169.4.70 This content was downloaded on 17/02/2016 at 22:46 </p><p>Please note that <a href="iopscience.iop.org/page/terms" target="_blank">terms and conditions apply. </a></p><p></p><ul style="display: flex;"><li style="flex:1">30th International Colloquium on Group Theoretical Methods in Physics (Group30) </li><li style="flex:1">IOP Publishing </li></ul><p>Journal of Physics: Conference Series <strong>597 </strong>(2015) 012042&nbsp;doi:10.1088/1742-6596/597/1/012042 </p><p>The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations<sup style="top: -0.5443em;">1 </sup></p><p>Eckhard Hitzer </p><p>Osawa 3-10-2, Mitaka 181-8585, International Christian University, Japan </p><p>E-mail: <a href="mailto:[email protected]" target="_blank">[email protected] </a></p><p>Abstract. Recently the general orthogonal planes split with respect to any two pure unit quaternions f, g&nbsp;∈ H, f<sup style="top: -0.3174em;">2 </sup>= g<sup style="top: -0.3174em;">2 </sup>= −1, including the case f = g, has proved extremely useful for the construction and geometric interpretation of general classes of double-kernel quaternion Fourier transformations (QFT) [7].&nbsp;Applications include color image processing, where the orthogonal planes split with f = g = the grayline, naturally splits a pure quaternionic three-dimensional color signal into luminance and chrominance components.&nbsp;Yet it is found independently in the quaternion geometry of rotations [3], that the pure quaternion units f, g and the analysis planes, which they define, play a key role in the geometry of rotations, and the geometrical interpretation of integrals related to the spherical Radon transform of probability density functions of unit quaternions, as relevant for texture analysis in crystallography. In our contribution we further investigate these connections. </p><p>1. Introduction to quaternions </p><p>Gauss, Rodrigues and Hamilton’s four-dimensional (4D) quaternion algebra H is defined over R with three imaginary units: </p><p>ij = −ji = k, jk = −kj = i, ki = −ik = j, i<sup style="top: -0.3754em;">2 </sup>= j<sup style="top: -0.3754em;">2 </sup>= k<sup style="top: -0.3754em;">2 </sup>= ijk = −1. </p><p>(1) <br>The explicit form of a quaternion q ∈ H is q = q<sub style="top: 0.1364em;">r </sub>+ q<sub style="top: 0.1364em;">i</sub>i + q<sub style="top: 0.1364em;">j</sub>j + q<sub style="top: 0.1481em;">k</sub>k ∈ H, q<sub style="top: 0.1364em;">r</sub>, q<sub style="top: 0.1364em;">i</sub>, q<sub style="top: 0.1364em;">j</sub>, q<sub style="top: 0.1481em;">k </sub>∈ R. We have the isomorphisms Cl(3, 0)<sup style="top: -0.3299em;">+ </sup>Cl(0, 2) H, i.e. H is isomorphic to the algebra of rotation </p><p></p><ul style="display: flex;"><li style="flex:1">∼</li><li style="flex:1">∼</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p>operators in Cl(3, 0). The quaternion conjugate (equivalent to Clifford conjugation in Cl(3, 0)<sup style="top: -0.3299em;">+ </sup>and Cl(0, 2)) is defined as qe = q<sub style="top: 0.1364em;">r </sub>− q<sub style="top: 0.1364em;">i</sub>i − q<sub style="top: 0.1364em;">j</sub>j − q<sub style="top: 0.1482em;">k</sub>k, peq = qepe, which leaves the scalar part q<sub style="top: 0.1364em;">r </sub></p><p>qp</p><p>unchanged. This leads to the norm of q ∈ H |q| = qqe = q<sub style="top: 0.2248em;">r</sub><sup style="top: -0.2627em;">2 </sup>+ q<sub style="top: 0.2714em;">i</sub><sup style="top: -0.3132em;">2 </sup>+ q<sub style="top: 0.2714em;">j</sub><sup style="top: -0.3132em;">2 </sup>+ q<sub style="top: 0.2936em;">k</sub><sup style="top: -0.3132em;">2</sup>, |pq| = |p| |q| . The </p><p>12</p><p>part q = V (q) = q −q<sub style="top: 0.1363em;">r </sub>= (q −qe) = q<sub style="top: 0.1363em;">i</sub>i+q<sub style="top: 0.1363em;">j</sub>j +q<sub style="top: 0.1481em;">k</sub>k is called a pure quaternion, it squares to the negative number −(q<sub style="top: 0.2547em;">i</sub><sup style="top: -0.3299em;">2 </sup>+ q<sub style="top: 0.2547em;">j</sub><sup style="top: -0.3299em;">2 </sup>+ q<sub style="top: 0.2767em;">k</sub><sup style="top: -0.3299em;">2</sup>). Every&nbsp;unit quaternion ∈ S<sup style="top: -0.3299em;">3 </sup>(i.e. |q| = 1) can be written as: </p><p>q</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>q = q<sub style="top: 0.1363em;">r </sub>+ q<sub style="top: 0.1363em;">i</sub>i + q<sub style="top: 0.1363em;">j</sub>j + q<sub style="top: 0.1481em;">k</sub>k = q<sub style="top: 0.1363em;">r </sub>+ q<sub style="top: 0.2713em;">i </sub>+ q<sub style="top: 0.2713em;">j </sub>+ q<sub style="top: 0.2935em;">k </sub>q = cos α + q sin α = exp(α q), where cos&nbsp;α = q<sub style="top: 0.1363em;">r</sub>, </p><p></p><ul style="display: flex;"><li style="flex:1">q</li><li style="flex:1">q</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>sin α = q<sub style="top: 0.2714em;">i </sub>+ q<sub style="top: 0.2714em;">j </sub>+ q<sub style="top: 0.2935em;">k</sub>, q = q/ |q| = (q<sub style="top: 0.1363em;">i</sub>i + q<sub style="top: 0.1363em;">j</sub>j + q<sub style="top: 0.1481em;">k</sub>k)/ q<sub style="top: 0.2714em;">i </sub>+ q<sub style="top: 0.2714em;">j </sub>+ q<sub style="top: 0.2935em;">k</sub>, and q = −1, q ∈ S . The </p><p>2</p><p>left and right inverse of a non-zero quaternion is q<sup style="top: -0.3299em;">−1 </sup>= qe/ |q| = qe/(qqe). The&nbsp;scalar part of a quaternion is defined as S(q) = q<sub style="top: 0.1364em;">r </sub>= <sup style="top: -0.358em;">1</sup><sub style="top: 0.3134em;">2 </sub>(q + qe), with symmetries ∀p, q&nbsp;∈ H: S(pq) = S(qp) = </p><p>1</p><p>In memory of Hans Wondratschek, *07 Mar. 1925 in Bonn, †26 Oct. 2014 in Durlach. </p><p>Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. </p><ul style="display: flex;"><li style="flex:1">Published under licence by IOP Publishing Ltd </li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">30th International Colloquium on Group Theoretical Methods in Physics (Group30) </li><li style="flex:1">IOP Publishing </li></ul><p>Journal of Physics: Conference Series <strong>597 </strong>(2015) 012042&nbsp;doi:10.1088/1742-6596/597/1/012042 </p><p>p<sub style="top: 0.1363em;">r</sub>q<sub style="top: 0.1363em;">r </sub>− p<sub style="top: 0.1363em;">i</sub>q<sub style="top: 0.1363em;">i </sub>− p<sub style="top: 0.1363em;">j</sub>q<sub style="top: 0.1363em;">j </sub>− p<sub style="top: 0.1481em;">k</sub>q<sub style="top: 0.1481em;">k</sub>, S(q) = S(qe), and linearity S(αp + βq) = α S(p) + β S(q) = αp<sub style="top: 0.1363em;">r </sub>+ βq<sub style="top: 0.1363em;">r</sub>, </p><p>∀p, q ∈ H, α, β&nbsp;∈ R. </p><p>The scalar part and the quaternion conjugate allow the definition of the R<sup style="top: -0.3299em;">4 </sup>inner product of two quaternions p, q&nbsp;as p · q = S(pqe) = p<sub style="top: 0.1363em;">r</sub>q<sub style="top: 0.1363em;">r </sub>+ p<sub style="top: 0.1363em;">i</sub>q<sub style="top: 0.1363em;">i </sub>+ p<sub style="top: 0.1363em;">j</sub>q<sub style="top: 0.1363em;">j </sub>+ p<sub style="top: 0.1481em;">k</sub>q<sub style="top: 0.1481em;">k </sub>∈ R. Accordingly we interpret in this paper the four quaternion coefficients as coordinates in R<sup style="top: -0.3298em;">4</sup>. In this interpretation selecting any two-dimensional plane subspace<sup style="top: -0.3299em;">2 </sup>and its orthogonal complement two-dimensional subspace allows to split four-dimensional quaternions H into pairs of orthogonal two-dimensional planes </p><p>(compare Theorem 3.5 of [7]). Dealing with rotations in this paper includes general rotations in R<sup style="top: -0.3299em;">4</sup>. </p><p>Definition 1.1 (Orthogonality of quaternions). Two quaternions p, q ∈ H are orthogonal p ⊥ q, </p><p>if and only if S(pqe) = 0. </p><p>2. Motivation for quaternion split </p><p>2.1. Splitting quaternions and knowing what it means </p><p>We deal with a split of quaternions, motivated by the consistent appearance of two terms in </p><p>R</p><p>the quaternion Fourier transform F{f}(u, v) =&nbsp;<sub style="top: 0.1302em;">2 </sub>e<sup style="top: -0.3298em;">−ixu</sup>f(x, y)e<sup style="top: -0.3298em;">−jyv</sup>dxdy [4]. This&nbsp;observation<sup style="top: -0.3298em;">3 </sup></p><p>R</p><p>(note that in the following always i is on the left, and j is on the right) and that every quaternion can be rewritten as q = q<sub style="top: 0.1364em;">r </sub>+ q<sub style="top: 0.1364em;">i</sub>i + q<sub style="top: 0.1364em;">j</sub>j + q<sub style="top: 0.1482em;">k</sub>k = q<sub style="top: 0.1364em;">r </sub>+ q<sub style="top: 0.1364em;">i</sub>i + q<sub style="top: 0.1364em;">j</sub>j + q<sub style="top: 0.1482em;">k</sub>ij, motivated the quaternion split<sup style="top: -0.3299em;">4 </sup>with respect to the pair of orthonormal pure unit quaternions i, j </p><p>1</p><p>q = q<sub style="top: 0.1363em;">+ </sub>+ q<sub style="top: 0.1363em;">−</sub>, q<sub style="top: 0.1363em;">± </sub>= (q ± iqj). </p><p>(2) <br>2</p><p>Using (1), the detailed results of this split can be expanded in terms of real components </p><p>q<sub style="top: 0.1363em;">r</sub>, q<sub style="top: 0.1363em;">i</sub>, q<sub style="top: 0.1363em;">j</sub>, q<sub style="top: 0.1481em;">k </sub>∈ R, as </p><p></p><ul style="display: flex;"><li style="flex:1">1 ± k </li><li style="flex:1">1 ± k </li></ul><p></p><p>q<sub style="top: 0.1363em;">± </sub>= {q<sub style="top: 0.1363em;">r </sub>± q<sub style="top: 0.1481em;">k </sub>+ i(q<sub style="top: 0.1363em;">i </sub>∓ q<sub style="top: 0.1363em;">j</sub>)} </p><p>=</p><p>{q<sub style="top: 0.1363em;">r </sub>± q<sub style="top: 0.1481em;">k </sub>+ j(q<sub style="top: 0.1363em;">j </sub>∓ q<sub style="top: 0.1363em;">i</sub>)}. </p><p>(3) </p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p>The analysis of these two components leads to the following Pythagorean modulus identity [5]. </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>Lemma 2.1 (Modulus identity). For q ∈ H, |q| = |q<sub style="top: 0.1364em;">−</sub>| + |q<sub style="top: 0.1364em;">+</sub>| . Lemma 2.2 (Orthogonality of OPS split parts [5]). Given any two quaternions p, q&nbsp;∈ H and </p><p>applying the OPS split of (2) the resulting two parts are orthogonal, i.e., p<sub style="top: 0.1363em;">+ </sub>⊥ q<sub style="top: 0.1363em;">− </sub>and p<sub style="top: 0.1363em;">− </sub>⊥ q<sub style="top: 0.1363em;">+</sub>, </p><p></p><ul style="display: flex;"><li style="flex:1">S(p<sub style="top: 0.1364em;">+</sub>qf<sub style="top: 0.1364em;">−</sub>) = 0, </li><li style="flex:1">S(p<sub style="top: 0.1364em;">−</sub>qf<sub style="top: 0.1364em;">+</sub>) = 0. </li><li style="flex:1">(4) </li></ul><p>Next, we discuss the map i( )j, which will lead to an adapted orthogonal basis of H. We observe, that iqj = q<sub style="top: 0.1364em;">+ </sub>− q<sub style="top: 0.1364em;">− </sub>, i.e. under the map i( )j the q<sub style="top: 0.1364em;">+ </sub>part is invariant, but the q<sub style="top: 0.1364em;">− </sub>part changes sign. Both parts are two-dimensional (3), and by Lemma 2.2 they span two completely </p><p>orthogonal planes, therefore also the name orthogonal planes split (OPS). The q<sub style="top: 0.1363em;">+ </sub>plane has the </p><p>2</p><p>The notion of two-dimensional plane employed here is thus different from a two-dimensional plane in R<sup style="top: -0.3174em;">3</sup>. The latter can be characterized by a unit bivector area element of the plane, which corresponds via the isomorphism </p><p>Cl(3, 0)<sup style="top: -0.3174em;">+ </sup></p><p>H to a pure unit quaternion.&nbsp;This difference in interpretation means also that despite of the </p><p>∼</p><p>=isomorphism Cl(3, 0)<sup style="top: -0.3174em;">+ </sup>H, the notion and expression of rotations in R cannot be automatically carried over to </p><p>4</p><p>∼</p><p>rotation operators of Cl(3, 0). Only&nbsp;in the case when rotations are restricted to the three-dimensional subset of <br>=pure quaternions, then Hamilton’s original R<sup style="top: -0.3174em;">3 </sup>interpretation of these rotations is obvious. </p><p>3</p><p>Replacing e.g.&nbsp;i → j, j → k throughout would merely change the notation, but not the fundamental observation. </p><p>4</p><p>Also called orthogonal planes split (OPS) as explained below. </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">30th International Colloquium on Group Theoretical Methods in Physics (Group30) </li><li style="flex:1">IOP Publishing </li></ul><p>Journal of Physics: Conference Series <strong>597 </strong>(2015) 012042&nbsp;doi:10.1088/1742-6596/597/1/012042 </p><p>orthogonal quaternion basis {i − j = i(1 + ij), 1 + ij = 1 + k}, and the q<sub style="top: 0.1363em;">− </sub>plane has orthogonal basis {i + j = i(1 − ij), 1 − ij = 1 − k}. All four basis quaternions (if normed: {q<sub style="top: 0.1363em;">1</sub>, q<sub style="top: 0.1363em;">2</sub>, q<sub style="top: 0.1363em;">3</sub>, q<sub style="top: 0.1363em;">4</sub>}) </p><p>{i − j, 1 + ij, i + j, 1 − ij}, </p><p>(5) form an orthogonal basis of H interpreted as R<sup style="top: -0.3299em;">4</sup>. Moreover,&nbsp;we obtain the following geometric picture on the left side of Fig.&nbsp;1. The&nbsp;map i()j rotates the q<sub style="top: 0.1363em;">− </sub>plane by 180<sup style="top: -0.3299em;">◦ </sup>around the twodimensional q<sub style="top: 0.1363em;">+ </sub>axis plane.&nbsp;This interpretation of the map i()j is in perfect agreement with Coxeter’s notion of half-turn [2]. In agreement with its geometric interpretation, the map i( )j is an involution, because applying it twice leads to identity </p><p></p><ul style="display: flex;"><li style="flex:1">i(iqj)j = i<sup style="top: -0.3753em;">2</sup>qj<sup style="top: -0.3753em;">2 </sup>= (−1)<sup style="top: -0.3753em;">2</sup>q = q. </li><li style="flex:1">(6) </li></ul><p>We have the important exponential factor identity </p><p>e<sup style="top: -0.3754em;">αi</sup>q<sub style="top: 0.1363em;">±</sub>e<sup style="top: -0.3754em;">βj </sup>= q<sub style="top: 0.1363em;">±</sub>e<sup style="top: -0.3754em;">(β∓α)j </sup>= e<sup style="top: -0.3754em;">(α∓β)i</sup>q<sub style="top: 0.1363em;">±</sub>. </p><p>(7) <br>This equation should be compared with the kernel construction of the quaternion Fourier transform (QFT). The equation is also often used in our present context for values α = π/2 or β = π/2. </p><p>−jx<sub style="top: 0.0922em;">2</sub>ω<sub style="top: 0.0922em;">2 </sub></p><p>Finally, we note the interpretation [7] of the QFT integrand e<sup style="top: -0.3298em;">−ix ω </sup>h(x) e </p><p>as a local </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>rotation by phase angle −(x<sub style="top: 0.1363em;">1</sub>ω<sub style="top: 0.1363em;">1 </sub>+ x<sub style="top: 0.1363em;">2</sub>ω<sub style="top: 0.1363em;">2</sub>) of h<sub style="top: 0.1363em;">−</sub>(x) in the two-dimensional q<sub style="top: 0.1363em;">− </sub>plane, spanned by {i + j, 1 − ij}, and a local rotation by phase angle −(x<sub style="top: 0.1364em;">1</sub>ω<sub style="top: 0.1364em;">1 </sub>− x<sub style="top: 0.1364em;">2</sub>ω<sub style="top: 0.1364em;">2</sub>) of h<sub style="top: 0.1364em;">+</sub>(x) in the twodimensional q<sub style="top: 0.1363em;">+ </sub>plane, spanned by {i − j, 1 + ij}. This&nbsp;concludes the geometric picture of the OPS of H (interpreted as R<sup style="top: -0.3299em;">4</sup>) with respect to two orthonormal pure quaternion units. </p><p>2.2. Even one pure unit quaternion can do a nice split </p><p>Let us now analyze the involution i( )i. The map i( )i gives </p><p>iqi = i(q<sub style="top: 0.1363em;">r </sub>+ q<sub style="top: 0.1363em;">i</sub>i + q<sub style="top: 0.1363em;">j</sub>j + q<sub style="top: 0.1481em;">k</sub>k)i = −q<sub style="top: 0.1363em;">r </sub>− q<sub style="top: 0.1363em;">i</sub>i + q<sub style="top: 0.1363em;">j</sub>j + q<sub style="top: 0.1481em;">k</sub>k. </p><p>(8) <br>The following orthogonal planes split (OPS) with respect to the single quaternion unit i gives <br>1</p><p>q<sub style="top: 0.1364em;">± </sub>= (q ± iqi), q<sub style="top: 0.1363em;">+ </sub>= q<sub style="top: 0.1363em;">j</sub>j + q<sub style="top: 0.1481em;">k</sub>k = (q<sub style="top: 0.1363em;">j </sub>+ q<sub style="top: 0.1481em;">k</sub>i)j, q<sub style="top: 0.1363em;">− </sub>= q<sub style="top: 0.1363em;">r </sub>+ q<sub style="top: 0.1363em;">i</sub>i, </p><p>(9) <br>2</p><p>where the q<sub style="top: 0.1364em;">+ </sub>plane is two-dimensional and manifestly orthogonal to the two-dimensional q<sub style="top: 0.1364em;">− </sub>plane. The basis of the two planes are (if normed: {q<sub style="top: 0.1363em;">1</sub>, q<sub style="top: 0.1363em;">2</sub>}, {q<sub style="top: 0.1363em;">3</sub>, q<sub style="top: 0.1363em;">4</sub>}) </p><p></p><ul style="display: flex;"><li style="flex:1">q<sub style="top: 0.1364em;">+</sub>-basis: {j, k}, </li><li style="flex:1">q<sub style="top: 0.1364em;">−</sub>-basis: {1, i}. </li></ul><p>(10) <br>The geometric interpretation of i( )i as Coxeter half-turn is perfectly analogous to the case i( )j. This&nbsp;form (9) of the OPS is identical to the quaternionic simplex/perplex split applied in quaternionic signal processing, which leads in color image processing to the </p><p>luminosity/chrominance split [6]. </p><p>3. General orthogonal two-dimensional planes split (OPS) </p><p>Assume in the following an arbitrary pair of pure unit quaternions f, g, f<sup style="top: -0.3299em;">2 </sup>= g<sup style="top: -0.3299em;">2 </sup>= −1. The </p><p>orthogonal 2D planes split (OPS) is then defined with respect to any two pure unit quaternions </p><p>f, g&nbsp;as </p><p>1</p><p>q<sub style="top: 0.1363em;">± </sub>= (q ± fqg) </p><p>=⇒ </p><p>fqg = q<sub style="top: 0.1363em;">+ </sub>− q<sub style="top: 0.1363em;">−</sub>, </p><p>(11) <br>2</p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1">30th International Colloquium on Group Theoretical Methods in Physics (Group30) </li><li style="flex:1">IOP Publishing </li></ul><p>Journal of Physics: Conference Series <strong>597 </strong>(2015) 012042&nbsp;doi:10.1088/1742-6596/597/1/012042 </p><p><em>q -</em>plane </p><p><strong>+</strong></p><p><em>q -</em>plane </p><p><strong>+</strong></p><p><strong>i-j </strong></p><p><strong>f− g </strong></p><p><strong>i+j </strong></p><p><strong>f+g </strong></p><p><strong>1+ ij </strong></p><p><strong>1+ fg </strong></p><p><strong>1− ij </strong></p><p><strong>1− fg </strong></p><p><strong>180</strong><sup style="top: -0.3744em;"><strong>o </strong></sup></p><p><strong>180</strong><sup style="top: -0.3744em;"><strong>o </strong></sup></p><p><em>q -</em>plane </p><p><strong>−</strong></p><p><em>q -</em>plane </p><p><strong>−</strong></p><p>Figure 1. Geometric pictures of the involutions i( )j and f()g as half turns. i.e. under the map f()g the q<sub style="top: 0.1363em;">+ </sub>part is invariant, but the q<sub style="top: 0.1363em;">− </sub>part changes sign. <br>Both parts are two-dimensional, and span two completely orthogonal planes.&nbsp;For f = ±g the q<sub style="top: 0.1363em;">+ </sub>plane is spanned by two orthogonal quaternions {f − g, 1 + fg = −f(f − g)}, the q<sub style="top: 0.1363em;">− </sub>plane is e.g. spanned&nbsp;by {f + g, 1 − fg = −f(f + g)}. For&nbsp;g = f a fully orthonormal four-dimensional basis of H is (R acts as rotation operator (rotor)) </p><p>{1, f, j<sup style="top: -0.3753em;">0</sup>, k<sup style="top: -0.3753em;">0</sup>} = R<sup style="top: -0.3753em;">−1</sup>{1, i, j, k}R, </p><p></p><ul style="display: flex;"><li style="flex:1">R = i(i + f), </li><li style="flex:1">(12) </li></ul><p>and the two orthogonal two-dimensional planes basis: </p><ul style="display: flex;"><li style="flex:1">q<sub style="top: 0.1363em;">+</sub>-basis: {j<sup style="top: -0.3753em;">0</sup>, k<sup style="top: -0.3753em;">0</sup>}, </li><li style="flex:1">q<sub style="top: 0.1363em;">−</sub>-basis: {1, f}. </li><li style="flex:1">(13) </li></ul><p>Note the notation for normed vectors in [3] {q<sub style="top: 0.1364em;">1</sub>, q<sub style="top: 0.1364em;">2</sub>, q<sub style="top: 0.1364em;">3</sub>, q<sub style="top: 0.1364em;">4</sub>} for the resulting total orthonormal </p><p>basis of H. Lemma 3.1 (Orthogonality of two OPS planes). Given any two quaternions q, p&nbsp;and applying the OPS with respect to any two pure unit quaternions f, g&nbsp;we get zero for the scalar part of the mixed products </p><p></p><ul style="display: flex;"><li style="flex:1">Sc(p<sub style="top: 0.1363em;">+</sub>qe<sub style="top: 0.1363em;">−</sub>) = 0, </li><li style="flex:1">Sc(p<sub style="top: 0.1363em;">−</sub>qe<sub style="top: 0.1363em;">+</sub>) = 0. </li></ul><p></p><p>(14) <br>Note, that the two parts x<sub style="top: 0.1363em;">± </sub>can be represented as </p><p></p><ul style="display: flex;"><li style="flex:1">1 ± fg </li><li style="flex:1">1 ∓ fg </li><li style="flex:1">1 ± fg </li><li style="flex:1">1 ∓ fg </li></ul><p>x<sub style="top: 0.1364em;">± </sub>= x<sub style="top: 0.1482em;">+f </sub></p><p></p><ul style="display: flex;"><li style="flex:1">+ x<sub style="top: 0.1481em;">−f </sub></li><li style="flex:1">=</li></ul><p></p><p>x<sub style="top: 0.1364em;">+g </sub></p><p>+</p><p>x<sub style="top: 0.1364em;">−g </sub></p><p>,</p><p>(15) </p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p>with commuting and anticommuting parts x<sub style="top: 0.1482em;">±f </sub>f = ±fx<sub style="top: 0.1482em;">±f </sub>, etc. <br>Next we mention the possibility to perform a split along any given set of two (two-dimensional) analysis planes.&nbsp;It has been found, that any two-dimensional plane in R<sup style="top: -0.3299em;">4 </sup>determines in an </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us