Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)

<p><strong>Limits Involving Infinity </strong></p><p><strong>(Horizontal and Vertical Asymptotes Revisited) Limits as ‘ x ’ Approaches Infinity </strong></p><p>At times you’ll need to know the behavior of a function or an expression as the inputs get increasingly larger … larger in the positive and negative directions. </p><p>We can evaluate this using the limit&nbsp;lim <em>f</em>(<em>x</em>) and&nbsp;lim <em>f</em>(<em>x</em>). </p><p></p><ul style="display: flex;"><li style="flex:1"><em>x</em>→ ∞ </li><li style="flex:1"><em>x</em>→ −∞ </li></ul><p></p><p>Obviously, you cannot use direct substitution when it comes to these limits.&nbsp;Infinity is not a number, but a way of denoting how the inputs for a function can grow without any bound. </p><p>You see limits for x approaching infinity used a lot with fractional functions. </p><p>1</p><p>Ex) Evaluate lim </p><p>using a&nbsp;graph. </p><p><em>x</em>→ ∞ </p><p><em>x</em></p><p>A more general version of this limit which will help us out in the long run is this … </p><p><strong>GENERALIZATION </strong></p><p>CONSTANT </p><p></p><ul style="display: flex;"><li style="flex:1">For any expression (or function) in the form </li><li style="flex:1">, this limit is always true </li></ul><p></p><p>POWER OF X </p><p>CONSTANT lim </p><p>=</p><p><em>x</em><sup style="top: -0.52em;"><em>n </em></sup></p><p><em>x</em>→ ∞ </p><p>HOW TO EVALUATE A LIMIT AT INFINITY FOR A RATIONAL FUNCTION Step 1: </p><p>Take the <strong>highest power of x in the function’s denominator </strong>and divide each </p><p>term of the fraction by this x power. <br>Step 2: <br>Apply the limit to each term in both numerator and denominator and remember: </p><p>lim <em>C </em>/ <em>x</em><sup style="top: -0.52em;"><em>n </em></sup>= 0 </p><p>and lim&nbsp;<em>C C &nbsp;</em>where ‘C’ is a constant. </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1"><em>x</em>→ ∞ </li><li style="flex:1"><em>x</em>→ ∞ </li></ul><p></p><p>Step 3: <br>Carefully analyze the results to see if the answer is either a finite number or ‘ </p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">’ or ‘ − ∞ </li><li style="flex:1">’</li></ul><p></p><p>6<em>x </em>−3 </p><p>Ex) Evaluate&nbsp;the limit&nbsp;lim </p><p>.</p><p><em>x</em>→ ∞ </p><p>5 +2<em>x </em></p><p>3−2<em>x </em>− 5<em>x</em><sup style="top: -0.52em;">2 </sup></p><p>Ex) Evaluate&nbsp;the limit&nbsp;lim </p><p>.</p><p><em>x</em>→ ∞ </p><p>2<em>x </em>+7 </p><p>−2 </p><p>5<em>x </em>+2<em>x </em></p><p>Ex) Evaluate&nbsp;the limit&nbsp;lim </p><p>.</p><p>3<em>x</em><sup style="top: -0.52em;">2 </sup>−2<em>x </em></p><p><em>x</em>→ −∞ </p><p>−2<em>x</em><sup style="top: -0.52em;">4 </sup>−5<em>x</em><sup style="top: -0.52em;">2 </sup>+ 3<em>x </em></p><p></p><ul style="display: flex;"><li style="flex:1">Ex) Evaluate&nbsp;the limit&nbsp;lim </li><li style="flex:1">.</li></ul><p></p><p>4<em>x</em><sup style="top: -0.52em;">3 </sup>+2<em>x </em>−7 </p><p><em>x</em>→ −∞ </p><p><strong>Limits at Vertical Asymptotes </strong></p><p>Now let’s go back to limits where x approaches a specific number instead of You’ll always want to try direct substitution first. </p><p>∞</p><p>.<br>We’ve seen what happens when the direct substitution leads to 0/0 … there’s usually an algebraic or trigonometric remedy to ‘fix’ the limit. non-zero constant <br>However, if your direct substitution leads to the form&nbsp;… zero </p><p></p><ul style="display: flex;"><li style="flex:1">… then you’re trying to take a limit where the function has a <strong>vertical asymptote </strong></li><li style="flex:1">.</li></ul><p>Your answer to a limit is still going to represent the y-value or y-direction the function takes as x approaches ‘a’ so in the event of a vertical asymptote the answer will usually involve </p><p>∞</p><p>.<br>Ex) Evaluate&nbsp;WITHOUT using a graph (analyze the limits logically) </p><p></p><ul style="display: flex;"><li style="flex:1"><em>x</em></li><li style="flex:1"><em>x</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">a) lim </li><li style="flex:1">b) lim </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>x</em>→ </li><li style="flex:1"><em>x</em>→ </li></ul><p></p><p>5</p><p>−<br>5+ </p><p><em>x</em></p><p>−</p><p>5</p><p><em>x</em></p><p>−</p><p>5</p><p><em>x</em></p><p></p><ul style="display: flex;"><li style="flex:1">c) What&nbsp;conclusion can be made for&nbsp;lim </li><li style="flex:1">?</li></ul><p></p><p><em>x</em>→ </p><p>5</p><p><em>x</em></p><p>−</p><p>5<br>Now that you’ve seen the semantics behind evaluating these limits, you’ll have a better understanding about what the function’s graph will look like. </p><p>The limits we just evaluated indicate the vertical asymptote behavior both left and right of x = 5. </p><p>If we also looked at the limit as&nbsp;x → ∞&nbsp;(right end behavior) and the limit as x → − ∞&nbsp;(left end behavior) we would have determined that the function has a horizontal asymptote at y = 1. </p><p></p><ul style="display: flex;"><li style="flex:1">x</li><li style="flex:1">x /x </li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">lim </li><li style="flex:1">= lim </li><li style="flex:1">= lim </li></ul><p></p><p>x→∞ </p><p>=</p><p>=1 </p><p>„</p><p>H.A. at y = 1 </p><p></p><ul style="display: flex;"><li style="flex:1">x→ ∞ </li><li style="flex:1">x→ ∞ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">x −5 </li><li style="flex:1">x /x −5/x </li><li style="flex:1">1−5/x 1−0 </li></ul><p></p><p>So, going back to our original limit strategy, if you try a direct substitution and you get a fraction in the form ‘NON-ZERO CONSTANT / ZERO’, then you’re x approach is located at one of the function’s vertical asymptotes and your answer will be either ‘ </p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">’ or ‘− ∞ </li><li style="flex:1">’</li></ul><p></p><p><strong>STEPS FOR EVALUATING LIMITS AT VERTICAL ASYMPTOTES </strong></p><p>Step 1: <br>Make sure the fractional expression in your limit is completely factored. <br>Step 2: <br>Use direct substitution on all the factors which DO NOT BECOME ZERO … make special note of the signs of these numbers&nbsp;you get. <br>Step 3: <br>One of the denominator’s factors will evaluate as 0 so we’ll need to analyze it more carefully. Based&nbsp;on which one-sided limit (left or right approach) you’re evaluating, this factor approaching zero will be will be positive or negative and VERY SMALL.&nbsp;This VERY SMALL value in the denominator will cause the evaluation of the limit to go infinite. <br>Step 4: <br>Considering all the factors your evaluated in step 2 and the factor approaching 0 you analyzed in step 3: if there are an even number of negative factors the limit will evaluate as ‘∞ ’ …&nbsp;if there are an odd number of negative factors the limit will evaluate as&nbsp;‘− ∞ ’. <br>Ex) Evaluate&nbsp;the limits </p><p>2<em>x </em></p><p>+</p><p>1</p><p>2<em>x </em></p><p>+</p><p>1</p><ul style="display: flex;"><li style="flex:1">a) lim </li><li style="flex:1">b) lim </li></ul><p></p><p><em>x</em>→−3<sup style="top: -0.3em;">+ </sup></p><p>(<em>x </em></p><p>+</p><p>3)<sup style="top: -0.52em;">4 </sup></p><p>(<em>x </em></p><p>3)<sup style="top: -0.52em;">4 </sup></p><p>+</p><p><em>x</em>→−3<sup style="top: -0.3em;">− </sup></p><p>2<em>x </em></p><p>+</p><p>1</p><ul style="display: flex;"><li style="flex:1">c) Make a conclusion for&nbsp;lim </li><li style="flex:1">.</li></ul><p></p><p>(<em>x </em></p><p>3)<sup style="top: -0.52em;">4 </sup></p><p>+</p><p><em>x</em>→− </p><p>3</p><p>6</p><p>−</p><p>3<em>x </em></p><p>+</p><p>2<em>x</em><sup style="top: -0.52em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">Ex) Evaluate lim </li><li style="flex:1">for </li></ul><p></p><p><em>x</em><sup style="top: -0.52em;">4 </sup></p><p>−</p><p>9<em>x</em><sup style="top: -0.52em;">2 </sup>a) <em>x </em></p><p>→</p><p>3 <sup style="top: -0.53em;">+ </sup></p><p>b) <em>x </em></p><p>→</p><p>3 <sup style="top: -0.53em;">− </sup></p><p>c) <em>x </em>→ 3 </p><p>d) <em>x </em></p><p>→</p><p>0 <sup style="top: -0.53em;">− </sup></p><p>e) <em>x </em></p><p>→</p><p>0 <sup style="top: -0.53em;">+ </sup></p><p>f) <em>x </em>→ 0 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us