ZIRCONIUM-CATALYZED ASYMMETRIC CARBOALUMINATION OF α-OLEFINS by Juan D. Arredondo B.S., Rutgers University, 2001 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Juan D. Arredondo [author’s name] It was defended on April 14, 2005 and approved by Dr. Scott Nelson, Department of Chemistry Dr. Dennis Curran, Department of Chemistry Dissertation Advisor: Dr. Peter Wipf, Department of Chemistry ii Copyright © by Juan D. Arredondo 2006 iii ZIRCONIUM-CATALYZED ASYMMETRIC CARBOALUMINATION OF α-OLEFINS Juan D. Arredondo, M.S. University of Pittsburgh, 2006 Coordinatively unsaturated alkylzirco nocene derivatives can undergo stereo-, and regioselective carbometallation reactions. The Zr-catalyzed carboalumination of alkynes has been widely explored and developed into a general reaction of high synthetic utility, and it has been applied to the synthesis of numerous complex natural products. Highly promising is the Zr-catalyzed asymmetric carboalumination of alkenes developed by Negishi and Kondakov. The reaction suffers from a few critical deficiencies, mainly the modest level of asymmetric induction, especially the 70-80% ee range obtained in most of the reactions. Further improvements in % ee will depend on the development of effective zirconocene catalysts. As part of our program to enhance the scope of organozirconium chemistry in organic synthesis, we focused on examining homogeneous zirconocenes and other zirconium-containing non-metallocenes for the catalytic asymmetric carbometalation of α-olefins. iv TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................ 1 1.1 Zr-CATALYZED CARBOALUMINATION OF ALKYNES .................................1 1.2 Zr-CATALYZED CARBOALUMINATION OF ALKENES .................................4 2.0 RESULTS AND DISCUSSION ................................................................................... 18 2.1 SYNTHESIS OF ANNULATED CHIRAL CYCLOPENTADIENE Zr- COMPLEXES................................................................................................................. 18 2.2 SYNTHESIS OF ANNULATED CHIRAL VERBENINDENES......................... 25 2.3 SYNTHESIS OF BIS(2-MENTHYL-4,7-DIMETHYLINDENYL)ZIRCONIUM DICHLORIDE................................................................................................................. 28 3.0 NON-METALLOCENE Zr-COMPLEXES .................................................................. 30 3.1 SYNTHESIS OF CORROLE Zr-COMPLEXES................................................. 30 3.2 SYNTHESIS OF 6,6’-DIMETHYLBIANILINE-BASED ZIRCONIUM COMPLEXES................................................................................................................. 32 3.3 SYNTHESIS OF ZIRCONIUM MONOANIONIC HYDRO(TRISPYRAZOLYL)BORATE COMPLEXES ............................................... 34 4.0 CONCLUSIONS ........................................................................................................... 42 5.0 EXPERIMENTAL PART .............................................................................................. 43 BIBLIOGRAPHY.................................................................................................................... 82 v LIST OF TABLES Table 1. Zirconium-catalyzed asymmetric methylalumination of α-olefins. ....................... 7 Table 2. Zr-catalyzed methyl- and ethylalumination-oxidation of alkenes........................ 10 Table 3. Results of alkene carboaluminations with catalyst 71.a....................................... 23 vi LIST OF FIGURES Figure 1. Selected natural products synthesized via a Zr-catalyzed carboalumination reaction. .................................................................................................................................. 13 Figure 2. Metallocenes studied in the carboalumination of alkenes. ................................ 14 Figure 3. Molecular orbital diagram of Cp2Zr (in square frontier orbitals)......................... 15 Figure 4. (a) Orientation of the frontier orbitals of a Cp2ML2 complex. (b) Available coordination sites of Cp2ZrCl2............................................................................................... 16 Figure 5. Annulated chiral cyclopentadiene Zr-complexes................................................ 18 Figure 6. Verbenone derived chiral annulated indenes...................................................... 26 Figure 7. 2-Methyl-4,7-dimethylindenyl Zr-complex 91...................................................... 28 Figure 8. N,N’-(6,6’-Dimethylbiphenyl-2,2-diyl)diamine Zr-complex 102.......................... 32 Figure 9. Zirconium monoanionic hydro(trispyrazolyl)borate complex 109a.................... 34 vii LIST OF SCHEMES Scheme 1. Conversion of (E)-2-methyl-1-alkenylalanes into various synthetically useful products. ...................................................................................................................................2 Scheme 2. Water accelerated carboalumination of alkynes................................................3 Scheme 3. Cascade conversion of alkynes into allylic alcohols. ........................................3 Scheme 4. Product distribution in Negishi’s initial attempt at olefin methylalumination....4 Scheme 5. Proposed pathway for the formation of major products 12 and 13.................. 5 Scheme 6. Zr-catalyzed ethylalumination of decene with different metallocenes. ............ 6 Scheme 7. Proposed transition state for zirconium-catalyzed enantioselective methylalumination of 1-alkenes with AlMe3........................................................................... 9 Scheme 8. Secondary asymmetric induction derived from α-agostic induction.............. 10 Scheme 9. Whitby’s Zr-catalyzed enantioselective 2-ethylalumination of alkenes. ........ 12 Scheme 10. Synthesis of verbenone-derived Zr-complex 60............................................ 20 Scheme 11. Synthesis of iPr- and Ph-analogs of 60. ......................................................... 22 Scheme 12. Synthesis of verbenindenes and attempts of ligand complexation to zirconium................................................................................................................................. 27 Scheme 13. Synthesis of 2-methyl-4,7-dimethylindenyl Zr-complex 91........................... 29 Scheme 14. Attempted synthesis of corrole Zr-complex 101............................................ 31 Scheme 15. Synthesis of dimethylbiphenyl bis (2-pyrrolemethyl)diimine 102................ 33 Scheme 16. Synthesis of Zr-hydro(trispyrazolyl)borate complexes.................................. 36 Scheme 17. Reactivity of Zr-complex 109a in the epoxy ester - ortho ester rearrangement........................................................................................................................ 38 Scheme 18. Zirconocene-catalyzed epoxy ester- ortho ester rearrangement................. 39 viii Scheme 19. Attempted zirconocene-catalyzed inter- and intramolecular Diels-Alder reactions. ................................................................................................................................ 40 Scheme 20. Attempted Zr-catalyzed intramolecular electrophilic alkylation. ................... 41 ix ABBREVIATIONS Ac Acetyl AlR3 Trialkylaluminum DCC 1,3-Dicyclohexylcarbodiimide DMAP 4-Dimethylaminopyridine DME 1,2-Dimethoxyethane DMF N,N-Dimethylformamide dr Diastereomeric ratio ee Enantiomeric excess HMPA Hexamethylphosphoramide KHMDS Potassium bis(trimethylsilyl)amide LAH Lithium aluminum hydride LDA Lithium diisopropylamide LHMDS Lithium hexamethyldisilazide MAO Methylaluminoxane MTPA α-Methoxy-α-(trifluromethyl)phenylacetic acid Mes Mesityl NBS N-Bromosuccinimide TEBA Benzyl triethylammonium chloride TBDPS tert-Butyldiphenylsilyl TFA Trifluoroacetic acid THF Tetrahydrofuran TMSCl Trimethylsilyl chloride x TsOH p-Toluenesulfonic acid Py Pyridine xi 1.0 INTRODUCTION 1.1 Zr-CATALYZED CARBOALUMINATION OF ALKYNES In 1978, Negishi and Van Horn introduced the Zr-catalyzed carboalumination of 1 alkynes (Equation 1). Initially, the reaction was thought to be stoichiometric in Cp2ZrCl2 and, it was later discovered to be catalytic.2 The mechanism and the regioselectivity of this reaction has been widely studied.3,4,5,6,7,8,9,10 This method of carbon-carbon bond formation via alkylalanes has been used in multiple synthetic applications and has been shown to be compatible with a wide range of functional groups, including hydroxyl groups, silyl ether protecting groups, halogens, alkenes and arenes. R H AlMe3 R (1) cat. Cp2ZrCl2 AlMe2 1 2 Negishi has demonstrated that the vinylalane intermediates can be synthetically useful reagents. For example, these vinylalanes are readily amenable to Pd(0) or Ni(0)- catalyzed cross-coupling reactions with alkenyl or arylhalides or they can be trapped with a range of electrophiles, including alkyl halides, chloroformates, epoxides, aldehydes and enones (Scheme 1).11 1 1. nBuLi R H R R1 H 2. 1 PhSO2Cl O R OH Me SO Ph 2 Me R1 H 1. nBuLi R1 H H 2. ClCOOEt O Me AlR2 R1 Me COOEt 2 Me O I2 X ClZn n H R1 H 1 1 R H Cat.PdL or NiL R Cat. PdLn n n Me n Me Me I 3 XMgCH2SiMe3 R1 H R H RZnX(MgX) Cat. NiLn Cat. NiL or PdL 1 n n Me R Me SiMe3 Scheme 1. Conversion of (E)-2-methyl-1-alkenylalanes
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages99 Page
-
File Size-