(Ruby 1960) • Uses a Solid Matrix Or Crystal Carrier • Eg Glass Or Sapphire

(Ruby 1960) • Uses a Solid Matrix Or Crystal Carrier • Eg Glass Or Sapphire

Solid State Lasers • Was first type of laser (Ruby 1960) • Uses a solid matrix or crystal carrier • eg Glass or Sapphire • Doped with ~1%-0.001% transition metal or rear earth ions • eg Chromium (Cr) or Neodynmium (Nd) • Mirrors at cavity ends (either on the rod or separate) • Typically pumped with light • Most common a Flash lamp • Newer ones pumped by laser diodes (more efficient) • Light adsorbed by doped ion, emitted as laser light • Mostly operates in pulsed mode (newer CW) Flash Lamp Pumping • Use low pressure flash tubes (like electronic flash) • Xenon or Krypton gas at a few torr (mm of mercury pressure) • Electrodes at each end of tube • Charge a capacitor bank: 50 - 2000 µF, 1-4 kV • High Voltage pulse applied to tube • Ionizes part of gas • Makes tube conductive • Capacitor discharges through tube • Few millisec. pulse • Inductor slows down discharge Light Source Geometry • Earlier spiral lamp: inefficient but easy • Now use reflectors to even out light distribution • For CW operation use steady light sources Tungsten Halogen or Mercury Vapour • Use air or water cooling on flash lamps Q Switch Pulsing • Most solid states use Q switching to increase pulse power • Block a cavity with controllable absorber or switch • Acts like an optical switch • During initial pumping flash pulse switch off • Recall the Quality Factor of resonance circuits (eg RLC) 2π energy stored Q = energy lost per light pass • During initial pulse Q low • Allows population inversion to increase without lasing • No stimulated emission • Then turn switch on • Now sudden high stimulated emission • Dump all energy into sudden pulse • Get very high power level, but less energy Q Switch Process During Laser Pulse • Flash lamp rises to max then declines (~triangle pulse) • Q switch makes cavity Q switch on after max pumping • Low Q, so little spontaneous light • Population inversion rises to saturation • The Q switch creates cavity: population suddenly declines due to stimulated emission • Laser pulse during high Q & above threshold conditions Energy Loss due to Mirrors & Q • Q switching can be related to the cavity losses • Consider two mirrors with reflectance R1 and R2 • Then the rate at which energy is lost is E (1− R R )E = 1 2 τ c τ r where τc = photon lifetime τr = round trip time = 2L/c E = energy stored in the cavity • Average number of photon round trips is the lifetime ratio τ 1 c = τ r ()1− R1R2 Q Equations for Optical Cavity • Rewrite energy equation in terms of photon lifetime τc • First note the energy lost in the time of one light cycle tf = 1/f Et f E Elost / cycle = = τ c fτ c where f = frequency • Thus the cavity's Q is 2πE 2πE Q = = = 2πfτ c Elost / cycle ⎛ E ⎞ ⎜ ⎟ ⎝ fτ c ⎠ • Thus for a laser cavity: 2π fτ r 4π fL 4π L Q = 2π fτ c = = = ()1 − R1R2 c()1 − R1R2 λ()1 − R1R2 • Q switch: go form high reflectivity to low reflectivity on one mirror • Also Q is related to the bandwidth of the laser (from resonance cavity circuits). f Q = ∆f • Thus lifetime relates to the bandwidth 1 ∆f = 2πτ c Transition Metal Impurity Ion Energy levels • Chromium Cr3+ ion • Atom has energy levels (shells) (orbit)(shell)(no. electrons) 1s2 2s2 2p6 3s2 3p6 • In ions unfilled orbital electrons interact • Inter-electron coulomb interaction split the energies (capital letter the L quantum)(spin quantum) • Ion then interacts with crystal field splits energy levels more Rare Earth Impurity Ion Energy levels • Spin of electrons interacts with orbit • Splits the inter-electronic levels Ruby Laser • First laser built used Ruby rods: Maiman 1960 • Crystal is Aluminium Oxide Al2O3: Sapphire • 0.05% Cr3+ • 3 level system: absorbs green/blue • emission at 694 nm • Pulsed operation Ruby Laser Design • Typically uses helix flash lamp • Mirrors may be plated onto rod • Seldom used now Nd: YAG Lasers • Dope Neodynmium (Nd) into material • Most common Yttrium Aluminum Garnet - YAG: Y3Al5O12 • Hard brittle but good heat flow for cooling • Next common is Yttrium Lithium Fluoride: YLF YLiF4 • Stores more energy, good thermal characteristics • Nd in Glass stores less energy but easy to make Nd: YAG Laser Energy Levels • 4 level laser • Optical transitions from Ground to many upper levels 4 • None radiative to F3/2 level • Typical emission 1.06 microns Nd: YAG Laser Output • Note spikes in emission • Pulse typically microseconds Nd: YAG Lasers Energy Distribution • Measure pulse output in total energy, Joules • Generally trade off high power for low repetition rate • High power, low rep rate • Q switch pulse in nanosec range Typical Nd: Yag layout Nd: Glass Lasers • Can make very large laser disks • meters in diameter • Large disks use to amplify laser beam • Used in Laser Fusion projects • TeraWatt lasers • Slab type laser: beam bounces through Cavity Diode pumped Nd: YAG Lasers • Newest used laser diode to pump Nd: YAG • Diodes very efficient and λ tuned to max absorption of YAG • Result: increase YAG efficiency for <5% to >50% • Diode laser light can be carried by fiber optic to YAG cavity • Means heat losses and power supply separate from laser Frequency Doubling & Higher Harmonics • Nd:Yag is often run as frequency doubled or higher laser • Generates visible or UV light that way • Works due to non-linear optical effects in materials • Called Second Harmonic Generation or frequency doubling • Certain crystals have non-linear relation between E field polarization & applied E fields • At high laser power E field from light causes effect • Polarization P of the light becomes 2 3 P = ε 0 (χ1E + χ2 E + χ3E + K) • Where χ1 is the linear polarization, χ2 second order polarization • Thus when a sine wave photon is applied then E = E0 sin()ωt 2 2 3 3 P = ε 0 (χ1E0 sin()ωt + χ2 E0 sin (ωt) + χ3E0 sin (ωt) + K) ⎛ 1 2 ⎞ P = ε 0 ⎜ χ1E0 sin()ωt + χ2 E0 []1− cos()2ωt + K⎟ ⎝ 2 ⎠ • Thus get both fundamental and 2nd harmonic light out Frequency Doubling • Direct high power laser light at 2nd harmonic or higher crystal • Done outside of laser cavity • Generates visible or UV light that way • For Nd:Yag get λ=1064 nm & λ2=1064/2=532 nm • Filter out fundamental and get a 2nd harmonic laser out in green • Get ~70% efficiency of conversion for green • 3rd harmonic 354 nm in UV much lower ~30-40% • 4th harmonic use two doubling crystals 266 nm ~15% efficient • 5th harmonic use 2nd & 3rd type crystals get 213 nm at ~6% • Typical crystals KTP, Lithium Niobate • Crystals have finite lifetime ~ few years depending on usage Typical Nd: Yag laser parameters Typical Nd: Yag laser parameters Alexandrite Lasers 3+ • Alexandrite: Cr : BeAl2O4 • Similar to ruby: developed 1973 • 4 level system • Transition to wide range of bands: 700-820 nm • Creates a tunable laser Tunable Alexandrite Laser • Place prism in cavity at rear • Wavelength for proper cavity controlled by prisim Color or F Centre Laser • Alkali Halids form point defects from X-rays, e-beams • Clear material becomes coloured • Defect a cation vacancy: net positive charge • Electron orbits this: broad absorption band Color Centre Laser • Optically pumped, usually by another laser • Broad band of states so laser tuned • eg Thallium doped KBr pumped by Nd:Yag • Emits at 1.4 - 1.6 microns, 20% effeciency .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us