Energy Approach to Poromechanics Energy Approach To

Energy Approach to Poromechanics Energy Approach To

Biot Medal Lecture 2003 Energy Approach to Poromechanics Olivier COUSSY NAVIER INSTITUTE Energy Approach to Poromechanics • drying and shrinkage • rocks, soils • wetting and swelling • concretes • temperature rise and build-up of pressure • woods • hydraulic diffusion and subsidence •foams • freezing and spalling • bones • capillarity and cracking • living tissues • electro-osmosis and consolidation •etc. •etc. Outlines : 1. Revisiting the Energy Approach of Saturated Poroelasticity 2. Energy Approach to Partially Saturated Poroelasticity 3. From Poromechanics to the Mechanics of Colloids 1 Revisiting Biot’s Energy Approach to Saturated Poroelasticity Open system: Element of sk fl m fl dΩ0 Solid Saturating Porous = + fluid mass material Skeleton fluid content Assuming no p dissipation σ dε + f + fl dm −dF = 0 ij ij fl fl ρfl Strain work Helmoltz Free energy infinitesimal change of Free energy Work to make the the open system supplied mass enter the by convection porous element g fldm fl Gibbs potential Separate equality for the skeleton Mesoscopic σij dεij + g fl dm fl −dF = 0 information dpfl m fl = φ ρfl dg fl = ρfl Fsk = F − ffl m fl Fluid state equations Skeleton free energy σij dεij + pfl dφ −dFsk = 0 Strain work Related to the skeleton only Lagrangean porosity 2 Linear Poroelasticity and Poroplasticity (saturated) σij dεij + pfl dφ −dFsk = 0 ∂Fsk ∂Fsk State equations: σij = pfl = ∂εij ∂φ LINEAR POROELASTICITY σ = Kε −bpfl φ − φ0 = pfl /N +b ε sij = 2G eij POROPLASTICITY p εij → εij − εij p ∂f p ∂f f (σij ,pfl ) ≤ 0 dε = dλ , dφ = dλ p ij φ → φ − φ ∂σij ∂pfl Plastic criterion State equations Flow rule Biot’s effective stress − ()σ + bp l = −Kε Experimental validation ? − σ 35 Loading 30 − (σ + bp ) 70 l [Bouteca, 1994] 60 25 50 Tavel limestone 40 20 30 15 20 b = 0.63 K =19500 MPa 10 p fl 10 0 K = 52700 MPa 020406080 5 − ε s 0 0 0.0005 0.001 0.0015 0.002 σ + pfl − pfl σ K p = 0 p 0 ≤ b =1− ≤ 1 fl + pfl = fl Ks 1 2 σ +p pfl σ 1 1 fl ε = − ε = 2 ε = + pfl − 1 + K = K K K K s s σ +pfl non-linear skeleton, linear solid matrix ε1 = KSEC ()σ +pfl 3 dσ = Kdε −bdpfl Dormieux et al., 2002 K = K()σ + pfl b =1− K()σ + pfl /Ks Terzaghi’s effective stress 10 103 8 103 (MPa) 3 K 6 10 pfl = 51 MPa Bemer et al., 2001 pfl = 1 MPa Sandstone specimen 4 103 2 103 − σ’ = − (σ + pfl) 0 0204060 Extension of Energy Approach to Unsaturated Poroelasticity Liquid water saturation dΩ t (1−n)dΩt n Sl dΩt n (1−Sl )dΩt sk l g Porous Solid Liquid Gaseous element = skeleton + water + mixture σij dεij + (Sl pl + Sg pg )dφ − φpcdSl −dFsk = 0 Total stress Averaged pressure * p pc = pg − pl Capillary pressure Fsk = Fsolid + φU gas γ Skeleton Solid Interface γ sg lg energy energy Energy liquid Capillary γ sl meniscus ∂Fsk * ∂Fsk ∂Fsk σij = p = − φpc = ∂εij ∂φ ∂Sl 4 Unsaturated Poroelasticity: Equivalent Pore Pressure π Solid Interface Coussy et ∂Fsk φpc = − matrix energy Dangla, 2002 ∂Sl F = F ε ,φ + φU S Energy separation pc = pc ()Sl sk solid ( ij ) ( l ) ∂Fsolid ∂Fsolid σij dεij + πdφ −dFsolid = 0 σij = π = ∂εij ∂φ p* Averaged pore pressure ( = Bishop’s equivalent pore pressure) π = Sl pl + Sg pg −U ≡ Equivalent pore pressure Sl U = − pc ()s ds ∫1 σ = Kε −bπ ! p (MPa) h (%) c r p = 0.1MPa = p (neglected) 300 100 atm g σ + p* (Bishop’s effective stress) 75 ij 200 * (here) σij + π = σij + p −U 50 100 MPa 25 120 −π = −p* + U 0 0 100 0 20 40 60 80 100 S (%) 80 l U 60 * Sl −p U = − pc ()s ds 40 ∫1 20 0 Cement paste 20 40 60 80 100 Sl (%) 5 w (kg/m-3) Sorption curve1/3 (10−6) (Swelling) 200 2000 Experiment 150 1500 Predicted 100 1000 50 500 0 0 0 20406080100 0 20 40 60 80 100 hr (%) hr (%) Cellular cement fiber composite h 0 b RT r w b b = 0.79 = × × ∫ dh = π nK M h h K Carmeliet, 1999 v r From poromechanics to mechanics of colloids At constant solution - - -- -- -- pressure and decreasing + ++ - + +++ salt concentration: - + - + + - + +- - +++- +- - - ++- - - +- +-- - - +- - - - - + ++- -- SWELLING - +- - - + - + ++- -- + -- + - - - + - +++ - + - + - - + - - +++ - - - - -+ + + + 1 ρ + - - - - - φ e + + + + σ dε + p dφ + p d −dF = 0 = eff A >1 + - - - - - ij ij w e sk A ρ + + - + - + - + - A e -+ + + + + - - - - - + + + + + - - - - - dσ = Kdε −dpw −bedpe + + + + + φ dpe eff d = be dε + pe = 2RT c A N εε 0RT ∂(φ/A) A = 2 eff dε = dφ ⇒ b = 2F c e ∂φ pe 6 From poromechanics to mechanics of colloids d q q -- ++-- s× = φ - ++ - + 2 +++- +- - - +- +-- - - - + ++- -- - -- + - z + - + -- p = 2RT ceff +++ e −d /2 +d / 2 Solution pressure d()σ + pw + pe = K dε −dpsw psw = RTc+ (0)()+ RTc− 0 − pe psw = −∫()1−be dpe ∂()φ / A ∂p sw b = or b = + 1 e ∂φ e ∂p pe e φ Poromechanics Porophysical Chemistry 1 b e 0.8 φ dσ = 0.1 0.5 1. 1.5 = 0.6 sA Kdε −dp −b dp w e e 0.4 0.2 0 10−2 10−1 100 101 q q = 2F Ac eff Ceff ranging from 10-4 to 10-4 mol/l εε RT . ranging from 30 nm to 1 nm A = 0 2F 2c eff q = 0.01to 0.2C ×m −2 7 As a conclusion build a bridge between … Upscaling methods thermodynamics POROPHYSICAL CHEMISTRY Micro/Nano Scales POROMECHANICS back analysis Macro Scale Many Thanks To Many People and specially to … P. Acker V. Baroghel-Bouny X. Chateau L. Dormieux P. Dangla T. Lassabatère F. Ulm 8.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us