Hybrid Propulsion System of a Long Endurance Electric UAV

Hybrid Propulsion System of a Long Endurance Electric UAV

Hybrid Propulsion System of a Long Endurance Electric UAV Tiago Miguel Moreira Ferreira Thesis to obtain the Master of Science Degree in Mechanical Engineering Supervisor(s): Prof. André Calado Marta Prof. Virginia Isabel Monteiro Nabais Infante Examination Committee Chairperson: Prof. Luís Manuel Varejão Oliveira Faria Supervisor: Prof. André Calado Marta Member of the Committee: Prof. António Manuel Relógio Ribeiro November 2014 ii Acknowledgments I would like to thank my parents, Gracinda Ferreira and Mario´ Ferreira, for supporting me along my academic path. I would also like to thank Daniela Carvalho for always being there to help me along the way. Thanks to the professors, Dr. Andre´ Marta and Dr. Virginia Infante, that guided me and helped me during the making of this thesis. And also thanks Diogo Rechena for the help in spell checking and proof reading. iii iv Resumo A procura de fontes energeticas´ alternativas tem crescido nos ultimos´ anos. A mudanc¸a para energia electrica´ ja´ pode ser vista na industria´ automovel,´ e a industria aeronautica´ esta´ lentamente a seguir os mesmo caminho. O uso de paineis´ solares e´ uma boa fonte energetica´ alternativa, sendo que e´ limpa e abundantemente dispon´ıvel. Esta tese foca-se num sistema que combina a gerac¸ao˜ electrica´ solar com uma propulsao˜ electrica´ numa aeronave nao˜ tripulada com 4.5 m de envergadura para missoes˜ civis de vigilanciaˆ durante longos per´ıodos de tempo. Um h´ıbrido solar-bateria e´ uma boa soluc¸ao˜ para ve´ıculos aereos´ de longa durac¸ao,˜ devido a` grande area´ dispon´ıvel nas asas para montar um painel solar capaz de fornecer energia suficiente para manter o aviao˜ no ar. O sistema h´ıbrido de propulsao˜ foi testado e verificado para energia e potenciaˆ dispon´ıveis versus requerimentos da missao,˜ devido a este ser a principal desvantagem de um sistema solar. Devido a estas celulas´ serem montadas em asas cobertas por uma pel´ıcula termo retractil,´ e sendo que estas celulas´ tendem a aquecer, o comportamento da pel´ıcula foi estudado para verificar a viabilidade da montagem do sistema. Os testes provaram que o sistema de propulsao˜ h´ıbrida e´ exequ´ıvel, visto que a potenciaˆ maxima´ fornecida pelo painel solar foi 106 W , mais que o dobro da potenciaˆ requerida durante a fase de cruzeiro. A pel´ıcula devera´ ser estudada em detalhe numa asa de teste, visto que um decrescimo´ de 39.76% na forc¸a podera´ induzir mudanc¸as serias´ na geometria da asa. Palavras-chave: Energia Solar, UAV, Propulsao˜ h´ıbrida, Voo electrico,´ Longa durac¸ao˜ v vi Abstract The demand for alternative and clean power sources has been growing in the past years. The change to electric power can already be seen in the automotive industry, and the aeronautical industry is slowly following. The use of solar panels is a good alternative power source to use with electrical drives, since it is clean and readily and abundantly available. This thesis focuses on a system combining solar power generation and an electrical drive to power a 4.5 m span unmanned aerial vehicle for aerial surveillance over long periods of time. A solar-battery hybrid is a good solution for long endurance aerial vehicles, since there is a large area available on the wings to mount a solar array capable of supplying enough energy to maintain the aircraft airborne. The hybrid propulsion system was tested and verified for energy and power availability versus mission requirements, since this is the main drawback of a solar system. Since these cells are to be mounted on a heat shrink film covered wing, and these cell tend to heat up, the behaviour of the film was studied to verify the viability of the system assembly. The tests proved that the hybrid propulsion system is a feasible system, since the maximum output was 106 W , more than twice the energy required during the cruise phase. The film should be further tested on a test wing, since the 39.76% force decrease could induce serious changes to the geometry of the wing. Keywords: Solar power, UAV, Hybrid propulsion, Electric flight, Long endurance vii viii Contents Acknowledgments . iii Resumo . v Abstract . vii List of Tables . xiii List of Figures . xvii Nomenclature . xix Glossary . xxii 1 Introduction 1 1.1 Motivation . 1 1.2 About this thesis . 2 1.3 Structure of the document . 2 2 Solar Power 3 2.1 A Journey to Photovoltaics . 3 2.2 Solar Power Alternatives . 4 2.3 Solar Flight . 5 2.3.1 History of Solar Powered Flight . 6 2.3.2 High Altitude Long Endurance Flights . 7 2.3.3 Piloted Solar Flight . 10 3 Aircraft, Mission and Hybrid Propulsion 13 3.1 Mission . 13 3.2 Aircraft . 14 3.3 Hybrid Propulsion . 17 4 Solar Cells 19 4.1 Introduction . 19 4.2 Solar Cell Design . 19 4.3 Solar Cell Testing . 21 4.3.1 Indoor Testing . 21 4.3.2 Outdoor Testing . 22 ix 4.3.3 Testing Method Selection . 22 4.4 Pyranometer . 22 4.4.1 PV Cell Pyranometer . 22 4.4.2 Silicon-Cell Photodiode Pyranometer . 22 4.4.3 Thermopile Pyranometer . 23 4.5 MPPT . 24 5 Energy Accumulator 27 5.1 Mechanical Accumulator . 27 5.2 Electrical Accumulator . 28 5.3 Chemical Accumulator . 28 6 Sensors and Data Acquisition System 31 6.1 Electrical Parameters Sensors . 31 6.2 Load Sensor . 32 6.3 Temperature Sensor . 33 7 Material Research and Selection 35 7.1 Solar Cell . 35 7.2 MPPT . 36 7.3 Energy Accumulator . 36 7.4 Pyranometer . 36 7.5 Electrical Sensors . 38 7.6 Load Sensors . 39 7.7 Temperature Sensors . 40 8 Sub Systems Testing 41 8.1 Electrical Sensor Calibration . 41 8.2 Solar Cells . 43 8.2.1 Test Design . 43 8.2.2 Single Cell Testing . 45 8.2.3 Efficiency Loss from Film Covering . 48 8.2.4 Efficiency Gains from Changing the Incidence Angle . 49 8.2.5 Multiple Cells Testing . 50 8.3 Full Array . 52 8.3.1 Cell Storage Design . 52 8.3.2 Full Array Test . 53 8.4 MPPT Solar Charger Testing . 54 8.4.1 Test Design . 54 8.4.2 MPPT Testing . 54 8.5 Electric Motor Testing . 55 x 8.5.1 Testing Apparatus . 55 8.5.2 Motor Testing . 56 9 Complete Hybrid Propulsion System 61 9.1 Complete System Hardware . 61 9.2 Hybrid Propulsion System Testing . 61 9.3 Mission Simulation . 64 10 Heat Shrink Film Test 69 10.1 Testing Apparatus . 69 10.2 Experimental Results . 74 11 Conclusions 77 11.1 Achievements . 77 11.2 Future Work . 79 Bibliography 84 A Equipment Technical Sheet 85 xi xii List of Tables 3.1 Relevant dimensions of the designed aircraft. ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    118 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us