SYSTEM IDENTIFICATION Michele TARAGNA

SYSTEM IDENTIFICATION Michele TARAGNA

SYSTEM IDENTIFICATION Michele TARAGNA Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino [email protected] Master Course in Mechatronic Engineering Master Course in Computer Engineering 01RKYQW / 01RKYOV “Estimation, Filtering and System Identification” Academic Year 2019/2020 Politecnico di Torino - DET M. Taragna System identification System identification is aimed at constructing or selecting mathematical models • of dynamical data generating systems to serve certain purposes (forecast, diagnosis, control, etc.) S Starting from experimental data, different identification problems may be stated: • 1. “time series modeling” if only “output” measurements y(t) are available S y(t) unknown system the system can be modeled as ⇒ S e(t) M y(t) system model with e(t) : “endogenous” input, for example e(t) WN(0, Σ ) ∼ e 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 1 Politecnico di Torino - DET M. Taragna 2. “input-output system identification” if both data u(t) and y(t) are available u(t) S y(t) unknown system the system can be modeled as ⇒ S e(t) E v(t) error model + u(t) M y(t) system model + with e(t) : “endogenous” input, for example e(t) WN(0, Σ ) ∼ e u(t) : “exogenous” input v(t) : disturbance or “residuals” or “left-overs” 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 2 Politecnico di Torino - DET M. Taragna A first step is to determine a class M of models within which the search for the • most suitable model should be carried on Classes of parametric models (θ) are often considered, where the parameter • M vector θ belongs to some admissible set Θ: M = (θ) : θ Θ {M ∈ } ⇓ the choice problem is tackled as a parametric estimation problem We start by discussing two model classes for linear time-invariant (LTI) systems: • – transfer-function models – state-space models 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 3 Politecnico di Torino - DET M. Taragna Transfer-function models The transfer-function models, known also as black-box or Box-Jenkins models, • involve external variables only (i.e., input and output variables) and do not require any auxiliary variable Different structures of transfer-function models are available: • – equation error or ARX model structure – ARMAX model structure – output error (OE) model structure – Box-Jenkins (BJ) model structure 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 4 Politecnico di Torino - DET M. Taragna Equation error or ARX model structure The input-output relationship is a linear difference equation: • y(t)+a1y(t−1)+a2y(t−2)+···+anay(t−na)=b1u(t−1)+···+bnbu(t−nb)+e(t) where the white-noise term e(t) WN(0, Σe) enters as a direct error − ∼ − Let us denote by z 1 the unitary delay operator, such that z 1y(t)= y(t 1), • − − − z 2y(t)= y(t 2), etc., and introduce the polynomials in the z 1 variable: − −1 −2 −na A(z)=1+ a1z + a2z + +ana z − − · · · − B(z)= b z 1 + b z 2 + +b z nb 1 2 · · · nb then, the above input-output relationship can be written as: A(z)y(t)= B(z)u(t)+ e(t) ⇒ B(z) 1 y(t)= A(z) u(t)+ A(z) e(t)= G(z)u(t)+ H(z)e(t) where B(z) 1 G(z)= A(z) , H(z)= A(z) 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 5 Politecnico di Torino - DET M. Taragna e(t) 1 v(t) H(z)= A(z) + u(t) B(z) y(t) G(z)= A(z) + If the exogenous input u( ) is present, then the model: • · A(z)y(t)= B(z)u(t)+ e(t) contains the autoregressive (AR) A(z)y(t) and the exogenous (X) B(z)u(t) parts; the integers n 0 and n 1 are the orders of the two parts of this model, a ≥ b ≥ denoted as ARX(na,nb) 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 6 Politecnico di Torino - DET M. Taragna G(z)=B(z)/A(z) is strictly proper, with: nab =max(na,nb) poles, nab 1 zeros • −1 −2 −nb − b z + b z + ··· + bn z G(z)= B(z)/A(z)= 1 2 b = −1 −2 −na 1+ a1z + a2z + ··· + ana z −1 −2 −nb nb n b1z + b2z + ··· + bn z · z z a = b · = −1 −2 −na na nb (1 + a1z + a2z + ··· + ana z ) · z z nb−1 nb−2 b1z + b2z + ··· + bn − = b · zna nb = na na−1 na−2 z + a1z + a2z + ··· + ana polynomial in z of degree n − 1 = ab polynomial in z of degree nab =max(na, nb) H(z)=1/A(z) is biproper, with: na poles (common to G(z)), na zeros (in z =0) • 1 H(z)= 1/A(z)= = −1 −2 −na 1+ a1z + a2z + ··· + ana z 1 zna = · = −1 −2 −na na 1+ a1z + a2z + ··· + ana z z zna = na na−1 na−2 z + a1z + a2z + ··· + ana 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 7 Politecnico di Torino - DET M. Taragna If n =0, then A(z)=1 and y(t) is modeled as a finite impulse response (FIR): • a y(t)= B(z)u(t)+ e(t) if u(t)=δ(t) and e(t)=0 y(t) is finite: y(t)=b δ(t 1)+ +b δ(t n ) ⇒ 1 − · · · nb − b e(t) v(t)≡e(t) H(z)=1 + u(t) = y(t) G(z) B(z) + G(z)=B(z) is strictly proper, with: n poles (in z =0), n 1 zeros b b − −1 −2 −nb G(z)=B(z)= b1z + b2z + ··· +bnb z = nb−1 nb−2 b z + b z + ··· +bn = 1 2 b znb 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 8 Politecnico di Torino - DET M. Taragna If the exogenous input u( ) is missing, then the model: • · A(z)y(t)= e(t) contains only the autoregressive (AR) A(z)y(t) part e(t) 1 y(t) H(z)= A(z) The integer n 1 is the order of the resulting model, denoted as AR(n ) a ≥ a 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 9 Politecnico di Torino - DET M. Taragna ARMAX model structure The input-output relationship is a linear difference equation: • y(t)+ a1y(t−1) + a2y(t−2) + ··· + ana y(t−na)= = b1u(t−1) + ··· + bnb u(t−nb)+ e(t)+ c1e(t−1) + ··· + cnc e(t−nc) where the white-noise term e(t) enters as a linear combination of nc+1 samples − By introducing the polynomials in the z 1 variable: • − − − A(z)=1+ a z 1 + a z 2 + +a z na 1 2 · · · na −1 −2 −nb B(z)= b1z + b2z + +bnb z − −· · · − C(z)=1+ c z 1 + c z 2 + +c z nc 1 2 · · · nc the above input-output relationship can be written as: A(z)y(t)= B(z)u(t)+ C(z)e(t) ⇒ B(z) C(z) y(t)= A(z) u(t)+ A(z) e(t)= G(z)u(t)+ H(z)e(t) where B(z) C(z) G(z)= A(z) , H(z)= A(z) 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 10 Politecnico di Torino - DET M. Taragna e(t) C(z) v(t) H(z)= A(z) + u(t) B(z) y(t) G(z)= A(z) + If the exogenous variable u( ) is present, then the model: • · A(z)y(t)= B(z)u(t)+ C(z)e(t) contains the autoregressive (AR) part A(z)y(t), the exogenous (X) part B(z)u(t) and the moving average (MA) part C(z)e(t), which consists of a “colored” noise (i.e., a sequence of correlated random variables) instead of a white noise; the integers n 0, n 1 and n 0 are the orders of the three parts of this a ≥ b ≥ c ≥ model, denoted as ARMAX(na,nb,nc) 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 11 Politecnico di Torino - DET M. Taragna G(z)=B(z)/A(z) is strictly proper, with: n =max(n ,n ) poles, n 1 zeros • ab a b ab− H(z)=C(z)/A(z) is biproper, with: n =max(n ,n ) poles, n zeros • ac a c ac −1 −2 −nc 1+ c z + c z + ··· + cn z H(z)= C(z)/A(z)= 1 2 c = −1 −2 −na 1+ a1z + a2z + ··· + ana z −1 −2 −nc nc n 1+ c1z + c2z + ··· + cn z · z z a = c · = −1 −2 −na na nc (1 + a1z + a2z + ··· + ana z ) · z z nc nc−1 nc−2 z + c z + c z + ··· + cn − = 1 2 c · zna nc = na na−1 na−2 z + a1z + a2z + ··· + ana polynomial in z of degree nac =max(na, nc) = polynomial in z of degree nac The na roots of the polynomial A(z) are common poles to G(z) and H(z) 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 12 Politecnico di Torino - DET M. Taragna If the input u( ) is missing, then the model: • · A(z)y(t)= C(z)e(t) contains only the autoregressive A(z)y(t) and the moving average C(z)e(t) parts e(t) C(z) y(t) H(z)= A(z) The integers n 0 and n 0 are the orders of the resulting model, denoted a ≥ c ≥ as ARMA(na,nc) If n =0, then A(z)=1 and the model, denoted as MA(n ), contains only • a c the moving average C(z)e(t) part e(t) y(t) H(z)=C(z) 01RKYQW / 01RKYOV - Estimation, Filtering and System Identification 13 Politecnico di Torino - DET M.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    67 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us