Tritium:Tritium: AA Micropowermicropower Sourcesource Forfor Onon--Chipchip Applicationsapplications

Tritium:Tritium: AA Micropowermicropower Sourcesource Forfor Onon--Chipchip Applicationsapplications

Tritium:Tritium: AA MicroPowerMicroPower SourceSource forfor OnOn--ChipChip ApplicationsApplications Nazir P. Kherani1, Baojun Liu2, Stefan Zukotynski1, Kevin P. Chen2 1Department of Electrical & Computer Engineering 2Department of Electrical and Computer Engineering and Department of Materials Science & Engineering University of Pittsburgh, Pittsburgh, PA, 15261 University of Toronto, Toronto, Ontario, M5S 3G4 Invited Presentation at Materials Innovations in an Emerging Hydrogen Economy February 24-27, 2008, Cocoa Beach, Florida Organized by the American Ceramic Society and ASM International Endorsed by National Hydrogen Association and Society for Advancement of Material and Process Engineering 1 OutlineOutline z Tritium: Basics z Tritium: A MicroPower Source – Beta-Voltaics – Beta-Powered MEMS – Beta-Luminescence – Cold Electron Source z Tritium: A Characterization/Diagnostic Tool – Tritium Tracer Studies – Tritium Effusion Studies – Defect Dynamics – Particle Sensor Applications z Summary 2 TritiumTritium z Isotope of Hydrogen 3 3 + − z H Æ He + β + νe + 18.6 keV z Nuclear Half-life: t ½ = 12.32 years λ = 1.78 x 10-9 s-1 z Activities: 1 Ci = 3.7 x 1010 Bq 1 Ci = 0.39 std cc 1 Ci = 33.7 μW z Biological: Half-life: 10 days ALI*: 80 mCi *Annual Limit on Intake z Chemically: Identical to 1H Mass effect (~3amu) Beta catalysis z Range (max): 4.5 – 6 mm in air 5 – 7 micron in water 3 ProducersProducers && UsersUsers CANDU z Producers of Tritium – Ontario Power Generation (OPG) • ~1 kg/year – Korean Electric Power Company (KEPCO) – USA • 225 kg produced since 1955 Tritium Producing Burnable Absorber Rods • 12-75 kg stockpiled (TPBARs) (Lithium Rods in a Light Water Reactor) – Russia – India, Pakistan Tritium Lighting z Users of Tritium – Pharmaceutical Research (~100g) – Tritium Lighting Industry (~30g) – Fusion Studies • Magnetic Confinement (ITER ~40g) • Inertial Confinement – Other Tritium in Natural Waterways 1 Tritium Unit (TU) = 1 T : 1018 H 4 OutlineOutline z Tritium: Basics z Tritium: A MicroPower Source – Beta-Voltaics – Beta-Powered MEMS – Beta-Luminescence – Cold Electron Source z Tritium: A Characterization/Diagnostic Tool – Tritium Tracer Studies – Tritium Outgassing & Effusion Studies – Defect Dynamics – Particle Sensor Applications z Summary 5 BetaVoltaicsBetaVoltaics electrons z 1951, Ehrenberg, Lang, & West: – Electron-voltaic effect (on a Se device) Sr90-Y90 z 1956, Rappaport – First direct conversion betavoltaic device (planar configuration, 0.4% efficiency) Si pn junction z 1968, Klein – Band-gap dependence of electron-hole pair (ehp) generation by ionizing radiation z 1974, Olsen – Theoretical treatment of betavoltaic conversion efficiencies for a variety of semiconductor materials z 1970s, D W Douglas Laboratories – Planar silicon betavoltaics fueled with 147Pm – Efficiencies ranged in 0.7 to 2% 6 RenewedRenewed InterestInterest inin RadioisotopeRadioisotope BatteriesBatteries z Continual miniaturization of electronic and electromechanical systems – Decreased power consumption z Integrated Power Sources (SoC) z High energy densities compared to chemical batteries z Operation in extreme environments – For example, temperatures of -100 to +150 oC 7 MicroPowerMicroPower ApplicationsApplications Sensor/Memory Chips SoC Microsystem Power requirement: 1-10 μW Power requirement: 1-10 mW Chip-scale Non-volatile Memory atomic clock RF-ID tag Micro-gas Analyzer Electrostatic actuation Chip-scale of MEMS/NEMS Navigation system 8 MarketMarket z All Batteries: $50 billion z Target markets for betavoltaic batteries – Oil, gas, and environmental – Military – Medical – Space – Emerging MEMS/NEMS z Market for betavoltaics $1 billion + 9 Electron/BetaElectron/Beta VoltaicsVoltaics Depletion Region Metal Contact + -- Band Diagram + + -- + + -- + _ ehp Energetic + -- + Electrons + + n-Si + -- p-Si _ + V I ehp: electron-hole pair 10 ChoiceChoice ofof RadioisotopeRadioisotope Isotope Eavg Emax P Work T1/2 (keV) (keV) (W/g) (kWh/ (yrs) 4y/g) H-3 5.7 18.6 0.34 10.3 12.3 Ni-63 21 66 0.07 2.5 92 Sr-90 540 900 0.75 25 28 Pm-147 62 230 0.34 7.3 2.6 Tritium z Low energy β- emitter (benign radioisotope) z Low cost: $2.5-$4/Ci z Long enough lifetime z Can be immobilized in a solid matrix z On-chip integration z Mature (existing tritium lighting industry) 11 Intrinsic Tritiated Amorphous Silicon Betavoltaic Device z Substitute tritium for hydrogen in Tritiated hydrogenated amorphous silicon pin Intrinsic Layer (uniform) photovoltaic devices p-a-Si:H z Tritium within the energy conversion layer i-a-Si:H:T – In contrast to betas originating from a source external to the device n-a-Si:H z Volume source battery – Attained through stacking of many cells – In contrast to a planar surface source battery Kherani, Kosteski, Gaspari, Zukotynski, Shmayda,, Fusion Technol. 28, (1995) 1609-1614. 12 aa--Si:TSi:T BetavoltaicBetavoltaic DeviceDevice At t ~ 0 At t ~ 10 days Tritiated Isc = 0.98 nA Isc < 0.1 nA Intrinsic Layer (uniform) V = 21 mV oc p-a-Si:H η = 0.1% i-a-Si:H:T n-a-Si:H p-a-Si:H i-a-Si:H:T n-a-Si:H Tritiated Delta Layer Kosteski, Kherani, Stradins, Gaspari, Shmayda, Sidhu, Zukotynski, IEE Proc. Circuits Devices Syst. 150, No.4, (2003) 27-281. 13 aa--SiHSiH BetavoltaicBetavoltaic CellCell PoweredPowered byby TT2 GasGas a-SiH Betavoltaics At t ~ 0 At t ~ 46 days 2 with ultrathin contact Isc = 637 nA/cm η < 0.1% Voc = 457 mV Cr, 5nm η = 1.2% p-a-Si:H, 20 nm i-a-Si:H, 450 nm, 10-15 % H n-a-Si:H SS substrate Tritium gas pressure: 678 torr Deus, 28th PVSEC, 2000. 14 PorousPorous SiliconSilicon 3D3D BetavoltaicsBetavoltaics z Introduce micropores in silicon through electrochemical anodization z Create pn junction in the pores through diffusion of n-type dopant z Introduce an appropriate radionuclide in the pores z A Volume Source Battery Gadeken, Sun, Kherani, Fauchet, Hirschman, US Patent 7250323 (2007). 15 3D3D VersusVersus 2D2D BetavoltaicsBetavoltaics η2D = 0.02% η3D = 0.2% Sun, Kherani, Hirschman, Gadeken, Fauchet, Adv Mater 17 (2005) 1230-1233. 16 IIIIII--VV BetavoltaicsBetavoltaics AlGaAs/GaAs Heterojunction Source of Generate Open Output Efficiency betas d current circuit Power, (%) Betavoltaics density Voltage, μW/cm2 μA/cm2 V Tritium- 0.04 0.75 0.024 5.6 titanium Tritium 0.76 0.91 0.55 5.8 gas Tritium 0.12 0.78 0.074 --- green lamp Andreev, Kavetsky, Kalinovsky, Larionov, Rumyantsev, th Shvarts, Yakimova, Ustinov, 28 PVSEC, 2000. 17 SiliconSilicon CarbideCarbide BetavoltaicsBetavoltaics 4H SiC BV Cell 4H SiC pin BV Cell 1 mCi, 63Ni Source (66keV) 8.5 GBq, 33P Source (249 keV) 2 I = 2.1 μA/cm2 Isc = 16.8 nA/cm sc V = 2.04 V Voc = 0.72 V oc η = 6% η = 4.5% Ni/Au Ni p SiC n SiC, 0.25 μm, 7Ndoped p SiC, 4 μm i SiC n SiC p+ SiC Ni/Au Al/Ti Chandrashekhar, Thomas, Li, Spencer, Lal, Eiting, Krishnamoorthy, Rodgers, George, Robertson, Appl. Phys. Lett., 88 (2006) 033506 Brockman, Appl. Phys. Lett., 88 (2006) 064101. 18 ContactContact PotentialPotential DifferenceDifference BetavoltaicsBetavoltaics Αir-medium CPD BV Solid CPD BV 2 2 Ιsc = 2.7 nA/cm Ιsc = 5.3 nA/cm Voc = 0.5 V Voc = 0.16 V 10 0.6 5 0.4 0 0.2 -5 0.0 0.1 mm darkness Current (nA) Current (nA) -0.2 -10 0.3 mm betavoltaic 0.6 mm -0.4 -15 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 -0.1 0.0 0.1 0.2 Voltage (volts) Voltage (volts) Liu, Chen, Kherani, Zukotynski, Antoniazzi, Appl. Phys. Lett., 92 (2008). 19 MEMS: Radioisotope-Powered Piezoelectric Generator z Self-reciprocating direct-charging cantilever z Direct conversion of collected- charge-to-motion energy into electrical – Radioisotope kinetic energy stored in the cantilever – Piezoelectric generator converts stored mechanical energy into electrical energy z Overall efficiency 2.78% Lal, Duggirala, Li, IEEE Pervasive Computing, 4, (2005), pp. 53-61. 20 BetaLuminescenceBetaLuminescence z 1898, Becquerel Becquerel – Radioluminescence – Phosphorescence material: potassium uranyl sulphate z 1920s, Elster, Geitel, and Cookers – Alpha radiation induced scintillations in ZnS. radiation phosphor z 1967, International Atomic Energy Agency (IAEA) – Standards for the use of common RL sources. hν – Most common: tritium beta-luminescence z Present – Tritium gas lighting – Radium ZnS:Cu paint – Novel materials & technologies in Betaluminescence • Organic - all-organic formulation: polystyrene and fluorescent dye electrons - organic system with inorganic phosphor • Inorganic - semiconductor pn junctions - incorporation of tritium in solid matrix: amorphous materials, hydrides, carbon nanotubes, zeolites hν 21 ColdCold ElectronElectron SourceSource z Tritium immobilized in a solid z Materials – Tritiated metal tritides – Tritiated amorphous silicon • Plasma enhanced chemical vapour deposition: entire film • Tritiation post film deposition: ~50 nm – Tritiated silica on Si-chip • High pressure tritium loading • Laser irradiated locked tritium – Tritiated silicon • High pressure tritium loading • Surface region: ~ 10 nm – Tritiated carbon nanotubes 22 OutlineOutline z Tritium: Basics z Tritium: A MicroPower Source – Beta-Voltaics – Beta-Powered MEMS – Beta-Luminescence – Cold Electron Source z Tritium: A Characterization/Diagnostic Tool – Tritium Tracer Studies – Tritium Outgassing & Effusion Studies – Defect Dynamics – Particle Sensor Applications z Summary 23 TritiumTritium TracerTracer TechniqueTechnique • Tritium as a tracer in measurement of hydrogen permeation in polymer for selection of new material in hydrogen fuel cell. • Two diagnostics to trace permeating HT: an ionization chamber tritium detector and an HTO water trap/copper oxide furnace/HTO water

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us