Tamara Broderick Associate Professor Electrical Engineering & Computer Science MIT

Tamara Broderick Associate Professor Electrical Engineering & Computer Science MIT

Nonparametric Bayes and Exchangeability: Part II Tamara Broderick Associate Professor Electrical Engineering & Computer Science MIT http://www.tamarabroderick.com/tutorials.html Roadmap Roadmap • Example problem: clustering Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? • How does thinking about exchangeability help us use NPBayes in practice? Dirichlet process mixture model 1 d G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid µ⇤ G n ⇠ 11 Dirichlet process mixture model • Gaussian mixture model 1 d G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid µ⇤ G n ⇠ 11 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢ , ⇢ ) Beta(a ,a ) 1 2 ⇠ 1 2 1 2 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid • i.e. µ⇤ G n ⇠ 11 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢ ,...,⇢ ) Dir(a ) 1 K ⇠ 1:K 1 2 3 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid • i.e. µ⇤ G n ⇠ 11 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … 1 2 3 4 … 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 µ D 2 R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 µ D 2 R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 µ D 2 R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 iid zn Categorical(⇢) ⇠ µ D 2 R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 z iid Categorical(⇢) n ⇠ µ2 D µn⇤ = µzn R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 z iid Categorical(⇢) n ⇠ µ2 D µn⇤ = µzn R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 z iid Categorical(⇢) n ⇠ µ2 D µn⇤ = µzn R iid • i.e. µ⇤ G n ⇠ 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 z iid Categorical(⇢) n ⇠ µ2 D µn⇤ = µzn R iid • i.e. µ⇤ G n ⇠ indep x (µ⇤ , ⌃) n ⇠ N n 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 z iid Categorical(⇢) n ⇠ µ2 D µn⇤ = µzn R iid • i.e. µ⇤ G n ⇠ indep x (µ⇤ , ⌃) n ⇠ N n 12 Dirichlet process mixture model • Gaussian mixture model ⇢ =(⇢1, ⇢2,...) GEM(↵) ⇠ … µ iid (µ , ⌃ ),k =1, 2,... 1 2 3 4 … k ⇠ N 0 0 1 d • i.e. G = ⇢kδµ =DP(↵, (µ0, ⌃0)) k=1 k N X ⇢2 z iid Categorical(⇢) n ⇠ µ2 D µn⇤ = µzn R iid • i.e. µ⇤ G n ⇠ indep x (µ⇤ , ⌃) n ⇠ N n [demo] 12 Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? • How does thinking about exchangeability help us use NPBayes in practice? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? • How does thinking about exchangeability help us use NPBayes in practice? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? • How does thinking about exchangeability help us use NPBayes in practice? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? Learn more from more data • What does an infinite/growing number of parameters really mean (in NPBayes)? • Why is NPBayes challenging but practical? • How does thinking about exchangeability help us use NPBayes in practice? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? Learn more from more data • What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs clusters; latent vs realized • Why is NPBayes challenging but practical? • How does thinking about exchangeability help us use NPBayes in practice? Roadmap • Example problem: clustering • Example NPBayes model: Dirichlet process (DP) • De Finetti for clustering: Kingman Paintbox • De Finetti for networks/graphs • Big questions • Why NPBayes? Learn more from more data • What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs clusters; latent vs realized • Why is NPBayes challenging but practical? Infinite dimensional parameter but finitely many realized (in practice, e.g., can integrate out or truncate the infinity) • How does thinking about exchangeability help us use NPBayes in practice? Clustering 1 Clustering “Clusters” 1 Clustering Econ Sports 1 Art “Clusters” Clustering Econ Art SportsTech Science Article 1 • Groups: clusters Article 2 Article 3 Article 4 Article 5 Article 6 Article 7 2 Clustering Econ Art SportsTech Science Article 1 • Groups: clusters • Exchangeable Article 2 Article 3 Article 4 Article 5 Article 6 Article 7 2 Clustering 0 1 3 [Kingman 1978] Clustering 0 1 3 [Kingman 1978] Clustering 3 [Kingman 1978] Clustering • Finite example: Dirichlet 3 [Kingman 1978] Clustering • Finite example: Dirichlet • Infinite example: GEM / DP 3 [Kingman 1978] Clustering … • Finite example: Dirichlet • Infinite example: GEM / DP 3 [Kingman 1978] Clustering … • Finite example: Dirichlet • Infinite example: GEM / DP 3 [Kingman 1978] Clustering 1 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 3 [Kingman 1978] Clustering 1 2 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 2 3 [Kingman 1978] Clustering 3 1 2 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 2 3 3 [Kingman 1978] Clustering 3 1 2 4 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 2 3 4 3 [Kingman 1978] Clustering 3 5 1 2 4 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 2 3 4 5 3 [Kingman 1978] Clustering 3 5 1 2 6 4 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 2 3 4 5 6 3 [Kingman 1978] Clustering 3 5 7 1 2 6 4 … • Finite example: Dirichlet • Infinite example: GEM / DP 1 2 3 4 5 6 7 3 [Kingman 1978] Thm (Kingman).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    145 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us