Thesis Is Owed to Him, Either Directly Or Indirectly

Thesis Is Owed to Him, Either Directly Or Indirectly

UvA-DARE (Digital Academic Repository) Quantum Computing and Communication Complexity de Wolf, R.M. Publication date 2001 Document Version Final published version Link to publication Citation for published version (APA): de Wolf, R. M. (2001). Quantum Computing and Communication Complexity. Institute for Logic, Language and Computation. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Quantum Computing and Communication Complexity Ronald de Wolf Quantum Computing and Communication Complexity ILLC Dissertation Series 2001-06 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam phone: +31-20-525 6051 fax: +31-20-525 5206 e-mail: [email protected] homepage: http://www.illc.uva.nl/ Quantum Computing and Communication Complexity Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magni¯cus prof.dr. J.J.M. Franse ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op donderdag 6 september 2001, te 12.00 uur door Ronald Michiel de Wolf geboren te Zaandam. Promotiecommissie: Promotores: Prof.dr. H.M. Buhrman Prof.dr.ir. P.M.B. Vit¶anyi Overige leden: Prof.dr. R.E. Cleve Dr. M. Santha Prof.dr. A. Schrijver Dr. L. Torenvliet Faculteit der Natuurwetenschappen, Wiskunde en Informatica Copyright c 2001 by Ronald de Wolf ° ISBN: 90{5776{068{1 Se non `e vero, `e ben trovato. v Contents Acknowledgments xiii 1 Quantum Computing 1 1.1 Introduction . 1 1.2 Quantum Mechanics . 2 1.2.1 Superposition . 3 1.2.2 Measurement . 3 1.2.3 Unitary evolution . 4 1.3 Quantum Memory . 5 1.4 Quantum Computation . 7 1.4.1 Classical circuits . 7 1.4.2 Quantum circuits . 8 1.5 The Early Algorithms . 10 1.5.1 Deutsch-Jozsa . 11 1.5.2 Bernstein-Vazirani . 13 1.5.3 Simon . 13 1.6 Shor's Factoring Algorithm . 15 1.6.1 Reduction from factoring to period-¯nding . 15 1.6.2 The quantum Fourier transform . 16 1.6.3 Period-¯nding, easy case: r divides q . 17 1.6.4 Period-¯nding, hard case: r does not divide q . 19 1.7 Grover's Search Algorithm . 19 1.8 Summary . 21 I Query Complexity 23 2 Lower Bounds by Polynomials 25 vii 2.1 Introduction . 25 2.2 Boolean Functions and Polynomials . 27 2.2.1 Boolean functions . 27 2.2.2 Multilinear polynomials . 27 2.2.3 Representing and approximating functions . 28 2.3 Query Complexity . 31 2.3.1 Deterministic . 31 2.3.2 Randomized . 31 2.3.3 Quantum . 33 2.4 Degree Lower Bounds on Query Complexity . 34 2.5 Polynomial Relation for All Total Functions . 36 2.5.1 Certi¯cate complexity and block sensitivity . 36 2.5.2 Polynomial bound for QE(f) and Q0(f) . 39 2.5.3 Polynomial bound for Q2(f) . 41 2.6 Symmetric Functions . 42 2.6.1 Tight bounds . 43 2.6.2 OR . 44 2.6.3 PARITY . 45 2.6.4 MAJORITY . 46 2.7 Monotone Functions . 46 2.7.1 Improvements of the general bounds . 46 2.7.2 Tight bounds for zero-error . 47 2.7.3 Monotone graph properties . 49 2.8 Summary . 51 3 Bounds for Quantum Search 53 3.1 Introduction . 53 3.2 Tight Bounds for Unordered Search . 55 3.3 Application to Success Ampli¯cation . 60 3.4 Lower Bound for Ordered Searching . 61 3.4.1 Intuition . 61 3.4.2 Simulating queries to an ordered input . 62 3.4.3 Lower bound for ordered search . 65 3.5 Summary . 66 4 Element Distinctness and Related Problems 67 4.1 Introduction . 67 4.2 Finding Claws if f and g Are not Ordered . 69 4.3 Finding Claws if f is Ordered . 72 4.4 Finding Claws if both f and g Are Ordered . 72 4.5 Finding a Triangle in a Graph . 74 4.6 Summary . 75 viii 5 Average-Case and Non-Deterministic Query Complexity 77 5.1 Introduction . 77 5.2 Average-Case Complexity: De¯nitions . 78 5.3 Average-Case: Deterministic vs. Bounded-Error . 80 5.4 Average-Case: Randomized vs. Quantum . 81 5.4.1 The function . 81 5.4.2 Quantum upper bound . 82 5.4.3 Classical lower bound . 84 5.4.4 Worst-case quantum complexity of f . 85 5.5 Further Average-Case Results . 86 5.5.1 Super-exponential gap for non-uniform ¹ . 86 5.5.2 General bounds . 86 5.5.3 MAJORITY . 87 5.5.4 PARITY . 90 5.6 Non-Deterministic Complexity: De¯nitions . 90 5.7 Non-Deterministic Complexity: Characterization and Separation . 92 5.7.1 Non-deterministic polynomials . 93 5.7.2 Characterization of N(f) and NQ(f) . 94 5.7.3 Separations . 95 5.7.4 Relation of NQ(f) to other complexities . 96 5.8 Summary . 97 II Communication and Complexity 99 6 Quantum Communication Complexity 101 6.1 Introduction . 101 6.2 Quantum Communication . 102 6.3 The Model of Communication Complexity . 104 6.3.1 Classical . 104 6.3.2 Quantum . 106 6.4 Quantum Upper Bounds . 108 6.4.1 Initial steps . 108 6.4.2 Buhrman, Cleve, and Wigderson . 108 6.4.3 Raz . 110 6.5 Some Applications . 111 6.6 Other Developments . 112 6.7 Summary . 113 7 Lower Bounds for Quantum Communication Complexity 115 7.1 Introduction . 115 7.2 Lower Bounds for Exact Protocols . 117 7.3 A Lower Bound Technique via Polynomials . 121 ix 7.3.1 Decompositions and polynomials . 121 7.3.2 Symmetric functions . 123 7.3.3 Monotone functions . 126 7.4 Lower Bounds for Bounded-Error Protocols . 127 7.5 Non-Deterministic Complexity . 133 7.5.1 Some de¯nitions . 133 7.5.2 Equality to non-deterministic rank . 134 7.5.3 Exponential quantum-classical separation . 135 7.6 Open Problems . 136 7.7 Summary . 137 8 Quantum Fingerprinting 139 8.1 Introduction . 139 8.2 Simultaneous Message Passing . 141 8.3 Short Near-Orthogonal Quantum States . 145 8.4 The State Distinguishing Problem . 146 8.5 Exactly Orthogonal Quantum States . 148 8.6 Exact Fingerprinting with a Quantum Key . 150 8.7 Quantum Data Structures . 151 8.7.1 The quantum case . 151 8.7.2 Comparison with the classical case . 153 8.8 Summary . 154 9 Private Quantum Channels 155 9.1 Introduction . 155 9.2 Preliminaries . 157 9.2.1 Mixed states and superoperators . 157 9.2.2 Von Neumann entropy . 158 9.3 De¯nition of Private Quantum Channel . 159 9.4 Examples and Properties of PQCs . 160 9.5 Lower Bound on the Entropy of PQCs . 164 9.6 Summary . 167 A Some Useful Linear Algebra 169 A.1 Some Terminology and Notation . 169 A.2 Unitary Matrices . 170 A.3 Diagonalization and Singular.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    226 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us