Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Eco 525: Financial Economics I LectureLecture 05:05: MeanMean--VarianceVariance AnalysisAnalysis && CapitalCapital AssetAsset PricingPricing ModelModel ((CAPMCAPM)) Prof. Markus K. Brunnermeier 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-1 Eco 525: Financial Economics I OverviewOverview •• SimpleSimple CAPMCAPM withwith quadraticquadratic utilityutility functionsfunctions (derived from state-price beta model) • Mean-variance preferences – Portfolio Theory – CAPM (intuition) •CAPM – Projections – Pricing Kernel and Expectation Kernel 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-2 Eco 525: Financial Economics I RecallRecall StateState--priceprice BetaBeta modelmodel Recall:Recall: E[RE[Rh]] -- RRf == ββh E[RE[R*-- RRf]] where βh := Cov[R*,Rh] / Var[R*] veryvery generalgeneral –– butbut whatwhat isis RR* inin realityreality?? 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-3 Eco 525: Financial Economics I SimpleSimple CAPMCAPM withwith QuadraticQuadratic ExpectedExpected UtilityUtility 1. All agents are identical • Expected utility U(x0, x1) = ∑s πs u(x0, xs) ⇒ m= ∂1u / E[∂0u] 2 • Quadratic u(x0,x1)=v0(x0) - (x1- α) ⇒ ∂1u = [-2(x1,1- α),…, -2(xS,1- α)] •E[Rh] – Rf = - Cov[m,Rh] / E[m] f h = -R Cov[∂1u, R ] / E[∂0u] f h = -R Cov[-2(x1- α), R ] / E[∂0u] f h = R 2Cov[x1,R ] / E[∂0u] • Also holds for market portfolio m f f m •E[R] – R = R 2Cov[x1,R ]/E[∂0u] ⇒ 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-4 Eco 525: Financial Economics I SimpleSimple CAPMCAPM withwith QuadraticQuadratic ExpectedExpected UtilityUtility 2. Homogenous agents + Exchange economy m ⇒ x1 = agg. endowment and is perfectly correlated with R E[RE[Rh]=]=RRf ++ ββh {{E[RE[Rm]]--RRf}} MarketMarket SecuritSecurityy LinLinee * f M f N.B.: R =R (a+b1R )/(a+b1R ) in this case (where b1<0)! 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-5 Eco 525: Financial Economics I OverviewOverview •• SimpleSimple CAPMCAPM withwith quadraticquadratic utilityutility functionsfunctions (derived(derived fromfrom statestate--priceprice betabeta model)model) • Mean-variance analysis – Portfolio Theory (Portfolio frontier, efficient frontier, …) – CAPM (Intuition) •CAPM – Projections – Pricing Kernel and Expectation Kernel 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-6 Eco 525: Financial Economics I Definition:Definition: MeanMean--VarianceVariance DominanceDominance && EfficientEfficient FrontierFrontier • Asset (portfolio) A mean-variance dominates asset (portfolio) B if μA ≤ μB and σA < σΒ or if μA>μBwhile σA ≤σB. • Efficient frontier: loci of all non-dominated portfolios in the mean-standard deviation space. By definition, no (“rational”) mean-variance investor would choose to hold a portfolio not located on the efficient frontier. 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-7 Eco 525: Financial Economics I ExpectedExpected PortfolioPortfolio ReturnsReturns && VarianceVariance • Expected returns (linear) hj μp := E[rp]=wj μj ,whereeachμj = hj j •Variance P 2 2 σ1 σ12 w1 σp := Var[rp]=w0Vw=(w1 w2) σ σ2 w µ 21 2 ¶µ 2 ¶ 2 2 w1 =(w1σ1 + w2σ21 w1σ12 + w2σ2) w µ 2 ¶ 2 2 2 2 = w1σ1 + w2σ2 +2w1w2σ12 ≤ 0 since σ12 ≤−σ1σ2. recall that correlation coefficient ∈ [-1,1] 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-8 Eco 525: Financial Economics I IllustrationIllustration ofof 22 AssetAsset CaseCase • For certain weights: w1 and (1-w1) μp = w1 E[r1]+ (1-w1) E[r2] 2 2 2 2 2 σ p = w1 σ1 + (1-w1) σ2 + 2 w1(1-w1)σ1 σ2 ρ1,2 2 (Specify σ p and one gets weights and μp’s) • Special cases [w1 to obtain certain σR] – ρ1,2 = 1 ⇒ w1 = (+/-σp – σ2) / (σ1 – σ2) – ρ1,2 = -1 ⇒ w1 = (+/- σp + σ2) / (σ1 + σ2) 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-9 Eco 525: Financial Economics I σp = |w1σ1 +(1− w1)σ2| σp σ2 For ρ1,2 = 1: Hence, w1 = ±σ −σ 1− 2 μp = w1μ1 +(1− w1)μ2 E[r2] μp E[r1] σ1 σp σ2 Lower part with … is irrelevant The Efficient Frontier: Two Perfectly Correlated Risky Assets 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-10 Eco 525: Financial Economics I σ +σ For ρ = -1:σp = |w1σ1 − (1 − w1)σ2| Hence, w = ± p 2 1,2 1 σ1+σ2 μp = w1μ1 +(1− w1)μ2 E[r ] 2 μ μ slope: 2− 1 σ σ1+σ2 p σ2 σ1 σ +σ μ1 + σ +σ μ2 μ μ 1 2 1 2 slope: − 2− 1 σ σ1+σ2 p E[r1] σ1 σ2 Efficient Frontier: Two Perfectly Negative Correlated Risky Assets 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-11 Eco 525: Financial Economics I For -1 < ρ1,2 < 1: E[r2] E[r1] σ1 σ2 Efficient Frontier: Two Imperfectly Correlated Risky Assets 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-12 Eco 525: Financial Economics I For σ1 = 0 E[r2] μp E[r1] σ1 σp σ2 The Efficient Frontier: One Risky and One Risk Free Asset 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-13 Eco 525: Financial Economics I EfficientEfficient FrontierFrontier withwith nn riskyrisky assetsassets andand oneone riskrisk--freefree assetasset The Efficient Frontier: One Risk Free and n Risky Assets 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-14 Eco 525: Financial Economics I MeanMean--VarianceVariance PreferencesPreferences ∂U ∂U •U(μ , σ ) with > 0, 2 < 0 p p ∂μp ∂σp – quadratic utility function (with portfolio return R) U(R) = a + b R + c R2 vNM: E[U(R)] = a + b E[R] + c E[R2] 2 2 = a + b μp + c μp + c σp = g(μp, σp) j j – asset returns normally distributed ⇒ R=∑j w r normal 2 • if U(.) is CARA ⇒ certainty equivalent = μp - ρA/2σ p (Use moment generating function) 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-15 Eco 525: Financial Economics I OptimalOptimal Portfolio:Portfolio: TwoTwo FundFund SeparationSeparation Price of Risk = = highest Sharpe ratio Optimal Portfolios of Two Investors with Different Risk Aversion 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-16 Eco 525: Financial Economics I EquilibriumEquilibrium leadsleads toto CAPMCAPM • Portfolio theory: only analysis of demand – price/returns are taken as given – composition of risky portfolio is same for all investors • Equilibrium Demand = Supply (market portfolio) • CAPM allows to derive – equilibrium prices/ returns. – risk-premium 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-17 omics I Financial EconEco 525: TheThe CAPMCAPM withwith aa riskrisk--freefree bondbond • The market portfolio is efficient since it is on the efficient frontier. • All individual optimal portfolios are located on the half-line originating at point (0,rf). ERR[]− • The slope of Capital Market Line (CML): M f σ M . ERR[]M− f ERR[]p= f + σ p σ M 16:14 Lecture 05 nMea-Variance Analysis and CAPM Slide 05-18 Eco 525: Financial Economics I TheThe CapitalCapital MarketMarket LineLine CML M rM rf j σ M σ p 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-19 Eco 525: Financial Economics I Proof of the CAPM relationship [old traditional derivation] • Refer to previous figure. Consider a portfolio with a fraction 1 - α of wealth invested in an arbitrary security j and a fraction α in the market portfolio μ p = αμM (+ 1−α μ )j 2 2 2 2 2 σ α=p σ( +M 1 −α ) σj 2 + ( α 1 −jM α ) σ As α varies we trace a locus which - passes through M (- and through j) - cannot cross the CML (why?) - hence must be tangent to the CML at M Tangency = d μ p = slope of the locus at M = | μ r α=1 M − f dσp = slope of CML = σM 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-20 Eco 525: Financial Economics I at α =1 σp = σM slope of dμp (μM μj)σM μM rf slope of ==α=1 = 2− = − tangent! locus dσp σ σ σM | M − jM σjM E[rj]=μj = rf + 2 (μM − rf ) σM * Do you see the connection to earlier state-price beta model? R = RM 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-21 Eco 525: Financial Economics I TheThe SecuritySecurity MarketMarket LineLine E(r) SML E(ri) E(rM) rf slope SML = (E(ri)-rf) /β i β M=1 β i β 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-22 Eco 525: Financial Economics I OverviewOverview •• SimpleSimple CAPMCAPM withwith quadraticquadratic utilityutility functionsfunctions (derived(derived fromfrom statestate--priceprice betabeta model)model) • Mean-variance preferences – Portfolio Theory –CAPM (Intuition) • CAPM (modern derivation) – Projections – Pricing Kernel and Expectation Kernel 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-23 Eco 525: Financial Economics I ProjectionsProjections • States s=1,…,S with πs >0 • Probability inner product • π-norm (measure of length) 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-24 Eco 525: Financial Economics I ⇒ shrink y axes y xx x and y are π-orthogonal iff [x,y]π = 0, I.e. E[xy]=0 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-25 Eco 525: Financial Economics I ……ProjectionsProjections…… • Z space of all linear combinations of vectors z1, …,zn • Given a vector y ∈ RS solve • [smallest distance between vector y and Z space] 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-26 Eco 525: Financial Economics I ……ProjectionsProjections y ε yZ E[ε zj]=0 for each j=1,…,n (from FOC) ε⊥ z yZ is the (orthogonal) projection on Z Z Z ∈ Z ⊥ 16:14y = Lecture y + 05 ε’, y Mean, ε -Variancez Analysis and CAPM Slide 05-27 Eco 525: Financial Economics I ExpectedExpected ValueValue andand CoCo--VarianceVariance…… squeeze axis by (1,1) x [x,y]=E[xy]=Cov[x,y] + E[x]E[y] [x,x]=E[x2]=Var[x]+E[x]2 ||x||= E[x2]½ 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-28 Eco 525: Financial Economics I ……ExpectedExpected ValueValue andand CoCo--VarianceVariance E[x] = [x, 1]= 16:14 Lecture 05 Mean-Variance Analysis and CAPM Slide 05-29 Eco 525: Financial Economics I OverviewOverview

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    73 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us