Poromechanics: from Linear to Nonlinear Poroelasticity and Poroviscoelasticity E. Bemer, M. Boutéca, O. Vincké, N. Hoteit, O. Ozanam To cite this version: E. Bemer, M. Boutéca, O. Vincké, N. Hoteit, O. Ozanam. Poromechanics: from Linear to Nonlinear Poroelasticity and Poroviscoelasticity. Oil & Gas Science and Technology - Revue d’IFP Energies nou- velles, Institut Français du Pétrole, 2001, 56 (6), pp.531-544. 10.2516/ogst:2001043. hal-02053960 HAL Id: hal-02053960 https://hal-ifp.archives-ouvertes.fr/hal-02053960 Submitted on 1 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Oil & Gas Science and Technology – Rev. IFP, Vol. 56 (2001), No. 6, pp. 531-544 Copyright © 2001, Éditions Technip Poromechanics: From Linear to Nonlinear Poroelasticity and Poroviscoelasticity E. Bemer1, M. Boutéca1, O. Vincké1, N. Hoteit2 and O. Ozanam2 1 Institut français du pétrole, 1 et 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France 2 ANDRA, Parc de la Croix-Blanche, 92298 Châtenay-Malabry Cedex - France e-mail: [email protected] - [email protected] - [email protected] - [email protected] - [email protected] Résumé — Poromécanique : de la poroélasticité linéaire à la poroélasticité non linéaire et la poroviscoélasticité — Compte tenu des répercussions sur les calculs de productivité et de réserves, une modélisation fiable du comportement des roches est essentielle en ingénierie de réservoir. Cet article étudie plusieurs aspects du comportement poroélastique des roches dans le cadre de la mécanique des milieux poreux saturés définie par Biot. Les lois de comportement de la poroélasticité linéaire et non linéaire sont tout d’abord établies à partir d’une décomposition fondamentale de l’état de contraintes, qui permet de relier de façon claire les modèles linéaire et non linéaire. Les notions de contrainte effective et de compressibilité sont abordées. Une loi de comportement incrémentale linéaire est définie à partir de la loi de comportement non linéaire proposée en introduisant des propriétés élastiques tangentes. Ces coefficients sont par nature exprimés en fonction des déformations et de la pression de pore, mais l’on établit ici des expressions explicites en fonction des contraintes et de la pression de pore. Des essais effectués sur un grès de réservoir illustrent ces différents points. Enfin, une loi de comportement de la poroviscoélasticité est présentée et appliquée à des données expérimentales provenant d’une argile. Mots-clés : mécanique des roches, poroélasticité, poroélasticité non linéaire, propriétés tangentes, poroviscoélasticité, contrainte effective, grès, argile. Abstract — Poromechanics: From Linear to Nonlinear Poroelasticity and Poroviscoelasticity — Due to the impact on productivity and oil in place estimates, reliable modeling of rock behavior is essential in reservoir engineering. This paper examines several aspects of rock poroelastic behavior within the framework of Biot’s mechanics of fluid saturated porous solids. Constitutive laws of linear and nonlinear poroelasticity are first determined from a fundamental stress decomposition, which allows to clearly connect linear and nonlinear models. Concept of effective stress and rock compressibility are considered. Linear incremental stress-strain relations are derived from the proposed nonlinear constitutive law by defining tangent elastic properties. These characteristics are naturally functions of strains and pore pressure, but explicit expressions as functions of stresses and pore pressure are established herein. Experiments performed on a reservoir sandstone illustrate these points. A constitutive law of poroviscoelasticity is finally presented and applied to experimental data obtained on clay. Keywords: rock mechanics, poroelasticity, nonlinear poroelasticity, tangent properties, poroviscoelasticity, effective stress, sandstone, shale. 532 Oil & Gas Science and Technology – Rev. IFP, Vol. 56 (2001), No. 6 NOMENCLATURE γ poroviscoelastic characteristic which connects the relaxed and instantaneous shear moduli, Latin letters 111=+ GG∞ 0 γ b Biot coefficient η shear viscosity bt tangent Biot coefficient η fl fluid dynamic viscosity κ D nonlinear characteristic o poroviscoelastic characteristic which connects the relaxed F nonlinear characteristic and instantaneous drained bulk moduli, 111 Fo free energy of the theory of elasticity =+ ∞ 0 κ KKooo G shear modulus ρ fl o fluid density Gt tangent shear modulus σ= Cauchy’s stresses H nonlinear potential tr σ σ = I = tr ε = ε +ε + ε mean stress 1 = 11 22 33 3 first strain invariant σ– σ 1 = = = + pp = effective stress of Terzaghi I = ε ε + ε ε + ε ε – ε ε – ε ε – ε ε 2 11 22 22 33 33 11 12 21 23 32 31 13 ζ bulk viscosity. second strain invariant ε) I3 = det (= third strain invariant Superscripts k intrinsic permeability e elastic part Kfl fluid bulk modulus v viscous part 0 instantaneous characteristic Ko drained bulk modulus t ∞ relaxed characteristic. K o tangent drained bulk modulus Ks bulk modulus of the solid matrix m fluid mass variation INTRODUCTION M Biot modulus Predicted production and restitution rates rely on the accurate p =–σ mean pressure c representation of reservoir poromechanical behavior. Most pp pore pressure engineering reservoir models use rock compressibility as a 3 constant mechanical key parameter. Yet, various meanings q = ss: with s=−σσ1 deviatoric stress are still attached to this concept. Moreover rock properties 2 can be stress-dependent and/or time-dependent. This paper Vb bulk volume studies rock poroelastic behavior within the framework of Biot’s mechanics of fluid saturated porous solids. Vp pore volume w relative flow vector of fluid mass. Constitutive laws of linear and nonlinear poroelasticity are first determined from a fundamental stress decomposition, which allows to clearly connect linear and nonlinear models. Greek letters The physical meaning of Biot’s and Terzaghi’s effective β coefficient of proportionality between the viscous stresses is clarified. The definition of formation compressi- porosity and the volumetric viscous strain, φv = βεv bility and expressions of Zimmerman’s compressibilities in terms of linear poroelastic properties are recalled. In order to ε = strains derive linear incremental stress-strain relations from the ε = tr ε= volumetric strain proposed nonlinear constitutive law, tangent elastic properties depending on strains and pore pressure are defined p p εε=+ 1 strains produced by σσ=+p 1 and expressed as explicit functions of stresses and pore 3K p s pressure. Experiments performed on reservoir sandstone 2 illustrate these points. A constitutive law of porovisco- εε==−ee: with e ε1 deviatoric strain d 3 elasticity is then presented and applied to experimental data obtained on clay. V φ= p eulerian porosity The models proposed in this paper are derived for an Vb isotropic homogeneous porous material, saturated with a E Bemer et al. / Poromechanics: From Linear to Nonlinear Poroelasticity and Poroviscoelasticity 533 viscous compressible fluid, under the hypothesis of small Hence, both in linear and nonlinear poroelasticity, the perturbations (Coussy, 1994; Charlez, 1991). Only isothermal solid matrix is supposed isotropic and linearly elastic with transformations are considered. bulk modulus Ks and shear modulus Gs. Under this assumption, elementary loading state [S] leads to a deformation state: 1 FUNDAMENTAL STRESS DECOMPOSITION []S p p ε =− 1 (2) Consider a representative elementary volume of a saturated 3Ks bulk porous material submitted to stresses σ and pore Indeed, loading [S] involves no change of the (eulerian) = []S []S ε porosity. Hence εε= , where s denotes the strain pressure pp. The stress decomposition defined in Figure1 s allows to derive the constitutive law from the behavior of the of the solid matrix. dry material (i.e. without any fluid in the porous space) and Thus, to the stress decomposition defined in Figure 1 the behavior of the matrix (solid and unconnected porosity) corresponds the following strain decomposition: (Biot, 1973). The total loading state [T] is simply described p p by the superposition of two elementary loading states: εε=− 1 3K (3) [B] (for bulk) stresses σ– and zero pore pressure; s = ε σ– 1 where denotes the strains produced by =. [S] (for solid matrix) stresses – pp = and pore pressure pp σσ=−p 1 p 2 LINEAR POROELASTICITY =+ (1) pppp0 – where σ= amounts to the effective stress of Terzaghi. Note 2.1 Mechanical Part of the Linear Constitutive Law that the stress convention of the mechanics of continuous and Biot’s Effective Stress media is adopted. Hence – p 1 denotes a compressive stress. p = In addition to the assumption of isotropic and linear elastic Component [B] involves no fluid pressure. Hence, from a behavior of the solid matrix, the law of linear poroelasticity mechanical point of view, it corresponds to the loading of the relies on the following assumption: the equivalent dry dry material by a stress field σσ=+p 1, whereas p material is isotropic and linearly elastic with
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages15 Page
-
File Size-