(1) RB Zhang, Serre Presentations of Lie Superalgebras, in Advances In

(1) RB Zhang, Serre Presentations of Lie Superalgebras, in Advances In

PUBLICATIONS OF RBZHANG -FEB 2016 Scholarly book chapters (1) R. B. Zhang, Serre presentations of Lie superalgebras, in Advances in Lie Superal- gebras, Springer INdAM Series, Vol. 7, pp.235–280. Papi, Paolo; Gorelik, Maria (Eds.), 2014. (2) Lehrer G.I., Zhang R.B. Quantum group actions on rings and equivariant K- theory. In Representation Theory of Algebraic groups and quantum groups, edited by Susumu Ariki, Hiraku Nakajima, Yoshihisa Saito, Ken-ichi Shinoda, Toshiaki Shoji and Toshiyuki Tanisaki. Contemporary Mathematics, 565 (2012), 115-141. (3) G.I. Lehrer and R.B. Zhang, A Temperley-Lieb analogue for the BMV alge- bra. Representation theory of algebraic groups and quantum groups, 155–190, Progress in Mathematics, 284, Birkhauser,¨ New York, 2010. (4) R.B. Zhang, Geometry of quantum homogeneous vector bundles and represen- tation theory of quantum groups. Lie Theory and its Applications in Physics II, 350-361. Edited by H.-D. Doebner, V.K. Dobrev, J. Hilgert. World Scientific, 1998. Refereed journal articles (5) Yuezhu Wu, R. B. Zhang, Integrable representations of the quantum affine special linear superalgebra. Advances in Theoretical and Mathematical Physics, in press. Accepted for publication on Feb 10, 2016. arXiv:1410.3974. (6) Yucai Su, R.B. Zhang, Generalised Jantzen filtration of Lie superalgebras II: the exceptional cases. Israel Jornal of Mathematics, in press. Accepted for publica- tion by in Jan 2015. arXiv:1303.4797. (7) Yuezhu Wu, R. B. Zhang, Integrable representations of affine A(m;n) and C(m) superalgebras. Journal of Pure and Applied Algebra, 220 (2016) 1434–1450. (8) Lehrer G.I., Zhang R.B. The Brauer Category and Invariant Theory. Journal of the European Mathematical Society, 17 (2015), 2311–2351. (9) H.H. Andersen, G.I. Lehrer, R.B. Zhang, Cellularity of certain quantum endomor- phism algebras. Pacific Journal of Mathematics, 279 (2015), 11-36. (10) Su, Y., Zhang, R. B. Character and Dimension Formulae for Queer Lie Superal- gebra. Communications in Mathematical Physics, 333 (2015) 1465–1481. (11) Xia, Chunguang; Zhang, Ruibin, Unitary highest weight modules over Block type Lie algebras B(q). J. Lie Theory 23 (2013), no. 1, 159–176. (12) Lehrer G.I., Zhang R.B. The second fundamental theorem of invariant theory for the orthogonal group, Annals of Mathematics, 176 (2012), 2031–2054. (13) Su Y., Zhang R.B. Generalised Jantzen filtration of Lie superalgebras I., Journal of the European Mathematical Society, 14 (2012), no. 4, 1103. 1 2 (14) Su Y., Zhang R.B. Generalised Verma modules for the orthosymplectic Lie super- algebra ospkj2, Journal of Algebra, 357 (2012), 94–115. (15) Coulembier K., Zhang R.B. Invariant integration on orthosymplectic and unitary supergroups, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 32 pages. (16) Chaichian M., Tureanu A., Zhang R.B. Extended Poincare´ supersymmetry in three dimensions and supersymmetric anyons, Journal of Mathematical Physics, 53 (2012), no. 7, 072302 (8 pages). (17) G. I. Lehrer, Hechun Zhang and R. B. Zhang, A quantum analogue of the first fun- damental theorem of classical invariant theory. Communications in Mathematical Physics 301 (2011), no. 1, 131–174. (18) Lehrer, Gustav I.; Nakano, Daniel K.; Zhang, Ruibin Detecting cohomology for Lie superalgebras. Adv. Math. 228 (2011), no. 4, 2098–2115. (19) N. Lam and R. B. Zhang, u-Cohomology formula for unitarizable modules over general linear superalgebras. Journal of Algebra 327 (2011), 50–70. (20) Meng, Guowu; Zhang, Ruibin Generalized MICZ-Kepler problems and unitary highest weight modules. J. Math. Phys. 52 (2011), no. 4, 042106, 23 pp. (21) Zhang, Rui-bin; Zhang, Xiao Noncommutative geometric approach to quantum spacetime. J. Shandong Univ. Nat. Sci. 46 (2011), no. 10, 1–31. (22) R. B. Zhang and X. Zhang, Projective module description of embedded noncom- mutative spaces. Reviews in Mathematical Physics 22 (2010), no. 5, 507–531. (23) W. Sun, D. Wang, N. Xie, R. B. Zhang and X. Zhang, Gravitational collapse of spherically symmetric stars in noncommutative general relativity. The European Physical Journal C. Particles and Fields 69 (2010), 271–279. (24) W. F. Ke, K. F. Lai and R. B. Zhang, Quantum codes from Hadamard matrices. Linear Multilinear Algebra 58 (2010), no. 7-8, 847–854. (25) X. Liu and R. B. Zhang, Topological vortices in chiral gauge theory of graphene. Annals of Physics, 325 (2010), 384 – 391. (26) D. Wang, R. B. Zhang and X. Zhang, Exact solutions of noncommutative vac- uum Einstein field equations and plane-fronted gravitational waves. The European Physical Journal C. Particles and Fields 64 (2009), no. 3, 439–444. (27) D. Wang, R. B. Zhang and X. Zhang, Quantum deformations of Schwarzschild and Schwarzschild-de Sitter spacetimes. Classical Quantum Gravity 26 (2009), no. 8, 085014, 14 pp. (28) Y. Z. Wu and R.B. Zhang, Unitary highest weight representations of quantum general linear superalgebra. Journal of Algebra 321 (2009), no. 11, 3568–3593. (29) G.I. Lehrer, R.B. Zhang, On Endomorphisms of Quantum Tensor Space. Letters in mathematical physics 86 (2008), 209–227. 3 (30) Y. Billig, A. Molev and R.B. Zhang, Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus. Advances in Mathematics 218, (2008) 1972 - 2004. (31) S. J. Cheng, W. Wang and R.B. Zhang, Super duality and Kazhdan-Lusztig poly- nomials. Transactions of the American Mathematical Society 360 (2008), no. 11, 5883–5924. (32) R.B. Zhang, Orthosymplectic Lie superalgebras in superspace analogues of quan- tum Kepler problems. Communications in Mathematical Physics, 280 (2008) No. 2, 545–562. (33) M. Chaichian, A. Tureanu, R.B. Zhang and Xiao Zhang, Riemannian Geometry of Noncommutative Surfaces. Journal of Mathematical Physics, 49 (2008) No. 073511, 26pp. (34) M. Chaichian, P. P. Kulish, A. Tureanu, R.B. Zhang and Xiao Zhang, Noncom- mutative fields and actions of twisted Poincare´ algebra. Journal of Mathematical Physics 49, 042302 (2008), pp16. (35) G. Zhang and R.B. Zhang, Equivariant vector bundles on quantum homogeneous spaces. Mathematical Research Letters, 15 (2008) 297–307. (36) Yucai Su and R.B. Zhang, Cohomology of Lie superalgebras slmjn and osp2j2n. Proceedings of London Mathematical Society (3) 94 (2007) 91 - 136. (37) Yucai Su and R.B. Zhang, Character and dimension formulae for general linear superalgebra. Advances in Mathematics 211 (2007) 1–33. (38) Shun-Jen Cheng, Weiqiang Wang and R.B. Zhang, A Fock space approach to representation theory of osp(2j2n). Transformation Groups, 12 (2007), no. 2, 209–225. (39) G.I. Lehrer and R.B. Zhang, Strongly Multiplicity Free Modules for Lie Algebras and Quantum Groups. Journal of Algebra 306 (2006), no. 1, 138–174. (40) M.A. Chebotar, Wen-Fong Ke, P.-H. Lee, R.B. Zhang, On maps preserving zero Jordan products. Monatshefte fur¨ Mathematik 149 (2006) 91-101. (41) Hechun Zhang and R.B. Zhang, Dual canonical bases for the quantum general linear supergroup. Journal of Algebra 304 (2006) 1026-1058. (42) Ngau Lam and R.B. Zhang, Quasi-finite representations of Lie superalgebras of infinite rank, Transactions of American Mathematical Society 358 (2006), no. 1, 403–439. (43) Dobrev, V. K.; Zhang, R.B. Positive energy unitary irreducible representations of the superalgebras osp(1j2n;R). Phys. Atomic Nuclei, 68 (2005), no. 10, 1660– 1669. (44) Hechun Zhang and R.B. Zhang, Dual canonical bases for the quantum special linear group and invariant subalgebras. Letters in Mathematical Physics 73 (2005) 165-181. 4 (45) M. Scheunert and R.B. Zhang, Integration on Lie supergroups: a Hopf algebra approach. Journal of Algebra 292 (2005), 324-342. (46) R B Zhang and Y M Zou. Spherical Functions On homogeneous superspaces. Journal of Mathematical Physics 46 (2005), no. 4, 043513, 21 pp. (47) P.D. Jarvis and R.B. Zhang, Resolution of the GL(3)⊃O(3) state labeling problem via O(3)-invariant Bethe subalgebra of the twisted Yangian. Journal of Physics A38 (2005), L219–L226. (48) Shun-Jen Cheng and R.B. Zhang, Howe duality and combinatorial character for- mula for orthosymplectic Lie superalgebras. Advances in Mathematics 182 (2004), 124–172. (49) R.B. Zhang, Quantum superalgebra representations on cohomology groups of non-commutative bundles. Journal of Pure and Applied Algebra 191 (2004), 285– 314. (50) Shun-Jen Cheng, Ngau Lam and R.B. Zhang, Character Formula for Infinite Di- mensional Unitarizable Modules of the General Linear Superalgebra, Journal of Algebra 273 (2004), 780–805. (51) Shun-Jen Cheng and R.B. Zhang, Analogue of Kostant’s u-cohomology formula for the general linear superalgebra. International Math. Research Notices, (2004), No. 1, 31-53. (52) A. I. Molev, V. N. Tolstoy, R.B. Zhang, On irreducibility of tensor products of evaluation modules for the quantum affine algebra. Journal of Physics A37 (2004), 2385–2399. (53) V.K. Dobrev, A.M. Miteva, R.B. Zhang, and B.S. Zlatev, On the Unitarity of D=9,10,11 Conformal Supersymmetry. Czechoslovak Journal of Physics 54 (2004), 1249-1256. (54) Lai, K. F. and Zhang, R.B. Multiplicity free actions of quantum groups and gener- alized Howe duality. Letters in Mathematical Physics 64 (2003), no. 3, 255–272. (55) R.B. Zhang, Howe Duality and the quantum general linear group, Proceedings of American Mathematical Society, 131 (2003), 2681-2692. (56) M. Scheunert and R.B. Zhang, The general linear supergroup and its Hopf super- algebra of regular functions, Journal of Algebra, 254 (2002), no. 1, 44–83. (57) R.B. Zhang, Quantum enveloping superalgebras and link invariants. Journal of Mathematical Physics 43 (2002) 2029–2048. (58) M. Scheunert and R.B. Zhang, Invariant integration on classical and quantum Lie supergroups. Journal of Mathematical Physics 42 (2001) 3871-3898. (59) A. L. Carey, A. Paolucci and R.B.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us