Mineralogy and Geochemistry of the Carbonaceous Mudstones, and Coal Petrogenesis of the Grootegeluk Formation in the Waterberg Coalfteld, South Africa. by Kevin Faure A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Cape Town Department of Geological Sciences University of Cape Town September, 1993 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town CONTENTS Page ABSTRACT 1-1 ACKNOWLEDGEMENTS 1-2 1. INTRODUCTION 1-4 1.1 General 1-4 1.2 Geomorphology, climate and vegetation 1-4 1.3 Coal mining in the Waterberg Coalfield 1-5 1.3.1 Coal mining discards 1-6 1.4 Previous work 1-7 1.5 Aim of study 1-8 2. GEOLOGY 2-11 2.1 Introduction 2-11 2.2 General geology 2-11 2.2.1 Lithostratigraphy 2-11 2.2.2 Terminology of clay-bearing rocks 2-16 2.2.3 Structure 2-17 2.3 Coal in the Waterberg basin 2-17 2.4 Discussion 2-19 3. ANALYTICAL CONDITIONS 3-21 3.1 X-ray diffraction 3-21 3.1.1 Instrumental conditions 3-21 3.1.2 Data collection and mineral identification 3-21 3.2 X-ray fluorescence spectrometry 3-21 3.2.1 Sample preparation 3-21 3.2.2 H20- and loss on ignition (LOI) determination 3-22 3.2.3 Major and minor elements 3-22 3.2.4 Trace elements 3-22 3.2.5 Infinite thickness 3-23 3.2.6 Counting errors and detection limits 3-23 3.3 Rare-earth element analysis 3-24 3.4 Stable isotope analysis 3-24 3.4.1 C and O stable isotope analyses of carbonate minerals 3-25 3.4.2 Organic carbon stable isotope analyses 3-27 3.5 Organic petrography 3-28 3.5.1 Maceral analysis 3-28 3.5.2 Reflectivity 3-28 3.6 Experimental leaching of coal mining discard material 3-28 3.6.1 Introduction 3-28 3.6.2 Evaluation of different analytical procedures 3-29 1 3.6.3 Leaching procedure 3-32 3.6.4 ICP-MS instrumental conditions 3-32 3.6.4.1 Spectral interference 3-33 3.6.4.2 Precision 3-34 3.6.4.3 Limits of determination 3-34 3.6.5 ICP-OES instrumental condition 3-34 3.6.6 Leachate analysis 3-36 3.7 Sm-Nd Radiogenic isotope analyses 3-37 4. MINERALOGY and MINERAL CHEMISTRY 4-39 4.1 Introduction 4-39 4.2 Results 4-40 4.2.1 Clay minerals 4-40 4.2.1.1 Kaolinite 4-40 4.2.1.2 Montmorillonite-illite 4-44 4.2.2 Quartz 4-44 4.2.3 Iron carbonates and iron sulphides 4-45 4.2.4 Calcite 4-48 4.2.5 Trace minerals 4-48 4.3 Discussion 4-50 4.3.1 Mineralogy 4-51 4.3.1.1 Clay minerals 4-51 4.3.1.1.1 Clay mineral structure and nomenclature 4-51 4.3.1.1.2 Clay minerals as an indication of palaeo-environment 4-52 4.3.1.1.3 Clay minerals and diagenesis 4-53 4.3.1.2 Quartz 4-54 4.3.1.3 Siderite and pyrite 4-54 4.3.1.4 Calcite 4-57 4.3.1.5 Trace minerals 4-58 4.3.2 Tonsteins 4-59 4.3.2.1 Introduction 4-59 4.3.2.2 The Waterberg Basin tonstein 4-59 4.3.3 Mineral matter and coal utilisation 4-62 4.3.3.1 Metallurgical 4-62 4.3.3.2 Combustion 4-62 4.3.3.3 Storage and handling 4-63 4.3.3.4 Discussion 4-63 4.6 Summary 4-64 5. COAL PETROGENESIS 5-68 5.1 Introduction 5-68 5.2 Background information 5-70 5.2.1 Coal petrography 5-70 11 5.2.3 Peat diagenesis 5-72 5.2.3.1 Eogenesis 5-72 5.2.3.2 Catagenesis 5-72 5.2.3.3 Metagenesis 5-74 5.3 Coal petrography of the Grootegeluk Formation 5-74 5.3.1 Results 5-75 5.4 Discussion. 5-75 5.4.1 Precursor vegetation and maceral variation 5-77 5.4.1.1 Vitrinite, reactive semi-fusinite and inertinite 5-77 5.4.1.2 Liptinite 5-77 5.4.2 Sediment and peat deposition 5-78 5.4.2.1 Previous work 5-78 5.4.2.1.1 Evidence from sedimentology 5-78 5.4.2.1.2 Evidence from palynology 5-78 5.4.2.1.3 Evidence from mineralogy in this study 5-79 5.4.3 Proposed depositional environment 5-79 5.4.4 The Ecca Formation and Beaufort Group boundary 5-81 5.4.5 Organic palaeo-thermometry 5-82 5.5 Summary 5-82 6. WHOLE-ROCK CHEMISTRY 6-84 6.1 Introduction 6-84 6.1.1 Previous geochemical studies 6-84 6.1.2 Present study 6-84 6.2 Whole-rock chemistry: XRF spectrometry results 6-85 6.2.1 Geochemical variation & element association 6-86 6.2.1.1 Factor 1 Zr, Nb, Sc, Ti02, Al20 3, Th, Y, V, Cr, Cu, W, Depth, N~ -LOI, and -S 6-88 Factor 7 A1203, Th, Nb, Si02, Ti0.2, and -LOI 6.2.1.2 Factor 2 Kp, Rb, Si02, Zn, MgO, -P20 5, -LOI and -Depth 6-92 6.2.1.3 Factor 3 Co, As, S, FeO, Ni, Mo and -Zn 6-93 6.2.1.4 Factor 4 La, Ce, Nd, and Y 6-94 6.2.1.5 Factor 5 Sr, Ba, and P20 5 6-95 Factor 6 Cao, Mn, P20 5, FeO, and MgO Factor 8 P20 5, CaO, MgO, -V, and -Cr 6.2.1.6 Trace elements not in FA: Au, Cs, Se, Br, Ge, Mo, Pb and Bi 6-98 6.2.1.7 Comparison of mean chemical compositions to other mudstones 6-99 6.3 Lanthanide elements 6-101 6.3.1 Results 6-101 6.3.2 Gradient Ion Chromatography vs. XRF spectrometry REE results 6-101 6.3.3 Comparison with Chondrite, PAAS and NASC REE values 6-103 6.3.3.1 Normalised REE patterns 6-103 6.3.3.2 Heavy minerals and REE 6-106 6.3.3.3 Eliminating quartz dilution and clay mineral concentration of REE 6-107 111 6.3.3.4 Mudstone provenance from REE 6-108 6.4 Normative mineral calculations 6-109 6.4.1 Introduction 6-109 6.4.2 Method of normative calculation 6-110 6.4.3 Results 6-111 6.4.4 XRD vs. Normative mineral proportions 6-111 6.4.4.1 Quartz and kaolinite 6-111 6.4.4.2 K-bearing minerals and smectite 6-111 6.4.4.3 Iron-bearing minerals 6-112 6.4.4.4 Apatite, calcite and anatase 6-113 6.4.4.5 Conclusion 6-113 6.4.5 Normative mineral distribution 6-113 6.4.5.1 Quartz, kaolinite and illite 6-114 6.4.5.2 Siderite and pyrite 6-114 6.4.5.3 Calcite and apatite 6-114 6.4.6 Summary 6-114 6.5 Controls on the chemical composition of the mudstones 6-117 6.5.1 Introduction 6-117 6.5.2 Provenance 6-118 6.5.3 Weathering in the source area of the mudstones 6-119 6.5.4 Transport and sedimentation 6-122 6.5.5 Palaeo-salinity conditions during deposition of sediments 6-123 6.5.6 Diagenesis. 6-125 6.6 General discussion and summary 6-126 7. ISOTOPE GEOCHEMISTRY 7-129 7 .1 Introduction 7-129 7.2 Carbonate C and O stable isotope geochemistry 7-129 7.2.1 Introduction 7-129 7.2.2 Results 7-129 7 .2.3 Discussion 7-131 7.2.3.1 Maximum temperature constraints for the Grootegeluk Formation 7-131 7.2.3.2 6 18() value of late Permian meteoric water 7-131 7.2.3.3 Siderite 6 180 and 6 13C values 7-133 7.2.3.4 Ankerite 6 180 and 6 13C values 7-135 18 13 7.2.3.5 Cleat-filling, lenses & early diagenetic calcite 6 0 & 6 C values 7-136 18 13 7.2.3.6 Palaeo-depositional environment from siderite 6 0 & 6 C values 7-136 7.2.4 Conclusion 7-138 7.3 Organic carbon stable isotope geochemistry 7-139 7.3.1 Introduction 7-139 7.3.2 Results 7-139 7.3.3 Discussion 7-140 7.3.3.1 Primary o13C values of plants 7-140 lV 7.3.3.1 Primary 613C values of plants 7-140 7.3.3.2 Effects of diagenesis on the 613C of peat 7-140 7.3.3.3 Palynological evidence 7-142 7.3.4 Conclusion 7-142 7.4 Sm-Nd radiogenic isotope geochemistry 7-143 7.4.1 Introduction 7-143 7.4.1.1 Background information 7-143 7.4.2 Results 7-144 7.4.3 Discussion 7-145 7.4.3.1 Stratigraphic variation of Sm-Nd model ages and €Nd values 7-145 7.4.3.2 Mudstone Provenances 7-146 7.4.3.3 Sm-Nd model ages of WCF sediments vs.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages220 Page
-
File Size-