Atmp Process: Improved Energy Efficiency in Tmp Refining Utilizing Selective Wood Disintegration and Targeted Application of Chemicals

Atmp Process: Improved Energy Efficiency in Tmp Refining Utilizing Selective Wood Disintegration and Targeted Application of Chemicals

Thesis for the degree of Doctor of technology, Sundsvall 2011 ATMP PROCESS: IMPROVED ENERGY EFFICIENCY IN TMP REFINING UTILIZING SELECTIVE WOOD DISINTEGRATION AND TARGETED APPLICATION OF CHEMICALS Dmitri Gorski Supervisors: Prof. Per Engstrand MSc. Jan Hill Dr Lars Johansson FSCN ‐ Fibre Science and Communication Network Department of Natural Sciences Mid Sweden University, SE‐851 70 Sundsvall, Sweden Norske Skog Industries, nsiFOCUS AS, Pulp Team NO‐1756 Halden, Norway ISSN 1652‐893X Mid Sweden University Doctoral Thesis 108 ISBN 978‐91‐86694‐34‐0 i Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av teknologie doktorsexamen torsdagen den 5 maj 2011, klockan 13.15 i sal M102, Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska. ATMP PROCESS: IMPROVED ENERGY EFFICIENCY IN TMP REFINING UTILIZING SELECTIVE WOOD DISINTEGRATION AND TARGETED APPLICATION OF CHEMICALS Dmitri Gorski © Dmitri Gorski, 2011 FSCN ‐ Fibre Science and Communication Network Department of Natural Sciences Mid Sweden University, SE‐851 70 Sundsvall Sweden Telephone: +46 (0)771‐975 000 Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2011 ii Dr. Alf de Ruvo – I would like to ask you, dr. Atack, about the relationship between energy and properties that we have in refining. As you know we have improved the properties of mechanical pulps due to TMP, CTMP, etc., but the disadvantages seem to be that we always increase the energy input. Do you think there is any chance that we can break this vicious circle, so as to reduce the amount of energy and still get better properties in refining? Dr. Douglas Atack – Yes, I do think this can be done. But we need to do further work to be certain. Fibre‐Water Interactions in Papermaking Symposium, Oxford, UK, 1977 iii ATMP PROCESS: IMPROVED ENERGY EFFICIENCY IN TMP REFINING UTILIZING SELECTIVE WOOD DISINTEGRATION AND TARGETED APPLICATION OF CHEMICALS Dmitri Gorski FSCN ‐ Fibre Science and Communication Network, Department of Natural Sciences, Mid Sweden University, SE‐851 70 Sundsvall, Sweden ISSN 1652‐893X, Mid Sweden University Doctoral Thesis 108; ISBN978‐91‐86694‐34‐0 ABSTRACT This thesis is focused on the novel wood chip refining process called Advanced Thermomechanical Pulp (ATMP) refining. ATMP consists of mechanical pre‐ treatment of chips in Impressafiner and Fiberizer prior to first stage refining at increased intensity. Process chemicals (this study was concentrated on hydrogen peroxide and magnesium hydroxide) are introduced into the first stage refiner. It is known that the use of chemicals in TMP process and first stage refining at elevated intensity can reduce the energy demands of refining. The downside is that they also alter the character of the produced pulp. Reductions in fibre length and tear index are usually the consequences of refining at elevated intensity. Addition of chemicals usually leads to reduction of the light scattering coefficient. Using statistical methods it was shown that it is possible to maintain the TMP character of the pulp using the ATMP process. This is explained by a separation of the defibration and the fibre development phases in refining. This separation allows defibration of chips to fibres and fibre bundles without addition of chemicals or increase in refining intensity. Chemicals are applied in the fibre development phase only (first stage refiner). The energy demand in refining to reach tensile index of 25 Nm/g was reduced by up to 1.1 MWh/odt (42 %) using the ATMP process on Loblolly pine. The energy demand in refining of White spruce, required to reach tensile index of 30 Nm/g, was reduced by 0.65 MWh/odt (37%). Characterizations of individual fibre properties, properties of sheets made from long fibre fractions and model fibre sheets with different fines fractions were carried out. It was established that both the process equipment configuration (i.e. the mechanical pre‐treatment and the elevated refining intensity) and the addition of process chemicals in the ATMP process influence fibre properties such as iv external and internal fibrillation as well as the amount of split fibres. Improvement of these properties translated into improved properties of sheets, made from the long fibre fractions of the studied pulps. The quality of the fines fraction also improved. However, the mechanisms of improvement in the fines quality seem to be different for fines, generated using improved process configuration and addition of process chemicals. The first type of fines contributed to better bonding of model long fibre sheets through the densification of the structure. Fines which have been influenced by the addition of the process chemicals seemed in addition to improve bonding between long fibres by enhancing the specific bond strength. The improved fibre and fines properties also translated into better air permeability and surface roughness of paper sheets, properties which are especially important for supercalendered (SC) printing paper. The magnitude of fibre roughening after moistening was mainly influenced by the process equipment configuration while the addition of process chemicals yielded lowest final surface roughness due to the lowest initial surface roughness. There was no difference in how fines fractions from the studied processes influenced the fibre roughening. However, fines with better bonding yielded model fibre sheets with higher PPS, probably due to their consolidation around fibre joints. Hence, the decrease in PPS can probably be attributed to the improvements in the long fibre fraction properties while the improvement of fines quality contributed to the reduction of air permeability. The process chemicals, utilized in the ATMP process (Mg(OH)2 and H2O2) also proved to be an effective bleaching system. Comparable increases in brightness could be reached using the ATMP process and conventional tower bleaching. Maximum brightness of the pulp was reached after approximately 10 minutes of high‐consistency storage after refining or 40 minutes of conventional bleaching. This study was conducted using a pilot scale refiner system operated as a batch process. Most of the experiments were performed using White spruce (Picea glauca). In Paper I, Loblolly pine (Pinus taeda) was used. It is believed that the results presented in this thesis are valid for other softwood raw materials as well, but this limitation should be considered. Keywords: ATMP, TMP, Hydrogen Peroxide, Magnesium Hydroxide, Mechanical Pre‐Treatment, Fibre Characterisation, Refiner Bleaching, SC paper, Newsprint v SAMMANFATTNING Avhandlingen är fokuserad på massaegenskaper och energiförbrukning hos den nya processen för raffinering av mekanisk massa, ATMP (Advanced Thermomechanical Pulp). Processen består av mekanisk förbehandling av flis med Impressafiner och Fiberizer före förstastegsraffinering. Intensiteten i förstastegsraffineringen har ökats genom att använda matande raffinörsegment och/eller högre rotationshastighet hos raffinören. Processkemikalier (här har främst väteperoxid och magnesium hydroxid använts) satsas i förstastegsraffinören efter defibrering av flis. Det är känt att tillsats av kemikalier och förstastegsraffinering vid högre intensitet leder till sänkt energiförbrukning i raffineringen. Nackdelen är dock att de samtidigt förändrar karaktären hos producerad massa. Reducerad fiberlängd och rivindex är vanliga vid raffinering med högre intensitet. Tillsats av kemikalier i raffineringsprocessen leder vanligen till att producerad massa får mer ”CTMP‐ karaktär”, det vill säga minskad ljusspridning jämfört med TMP vid samma dragindex. Med hjälp av statistisk databehandling (varians‐ och principalkomponentsanalys) har det visats att det är möjligt att behålla TMP‐ karaktären hos ATMP massan även när kemikalier och högre raffineringsintensitet används. Det beror på att defibrering av flis och utvecklingen av fibrer sker i olika processteg. Separationen medger att genomföra defibrering av flis till fibrer och fiberknippen under TMP‐liknande förhållanden utan tillsats av kemikalier eller ökning av raffineringsintensiteten. Kemikalierna appliceras endast under fiberutveckligsfasen (förstastegsraffinören och vidare). Med bibehållen TMP‐ karaktär hos producerad ATMP‐massa minskade energiförbrukningen till dragindex 25 Nm/g med 1.1 MWh/odt (42 %) när ATMP processen tillämpades på sydstatstall (Pinus Taeda). Energiförbrukningen vid raffinering av gran för att nå dragindex 30 Nm/g minskade med 0.65 MWh/odt (37 %) när White spruce (Picea glauca) användes. Karaktärisering av fibrer och ark inklusive långfiberfraktions‐ och finfraktionsark – de senare tillverkade med en blandning av TMP‐långfiber och olika finfraktioner – har utförts. Både processutformningen för ATMP (det vill säga mekanisk förbehandling och raffinering vid högre intensitet) och kemikalietillsats påverkar fiberegenskapsutvecklingen exempelvis intern‐ och externfibrillering samt andel splittrade fibrer. Bättre fiberegenskaper hos ATMP gav bättre arkegenskaper hos ark tillverkade av långfiberfraktion från ATMP än från TMP. Både processutformning och kemikalietillsats påverkade och förbättrade kvaliteten vi hos ATMP finfraktion. Förbättringarna till följd av ändrad processutformning respektive kemikalietillsats tyder på att olika mekanismer bidrar. Förbättrade egenskaper hos fibrer och finmaterial leder också till minskning av luftpermeabilitet och ytråhet hos pappersark. Dessa egenskaper är viktiga för SC tryckpapper. Graden av

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    132 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us