Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model Klaus Spanderen1 R/Finance 2016 University of Illinois, Chicago May 20-21, 2016 1Joint work with Johannes Göttker-Schnetmann Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 1 / 19 Motivation Combine two of the most popular option pricing models, the Local Volatility model with x = ln St ! σ2 (x ; t) dx = r − q − LV t dt + σ (x ; t)dW t t t 2 LV t t and the Heston Stochastic Volatility model ν p dx = r − q − t dt + ν dW x t t t 2 t t p ν dνt = κ (θ − νt ) dt + σ νt dWt ν x ρdt = dWt dWt to control the forward volatility dynamics and the calibration error. Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 2 / 19 Model Definition Add leverage function L(St ; t) and mixing factor η to the Heston model: L2(x ; t) p dx = r − q − t ν dt + L(x ; t) ν dW x t t t 2 t t t t p ν dνt = κ (θ − νt ) dt + ησ νt dWt ν x ρdt = dWt dWt Leverage L(xt ; t) is given by probability density p(xt ; ν; t) and s R σ (x ; t) + p(xt ; ν; t)dν L(x ; t)= LV t = σ (x ; t) R t p LV t R νp(x ; ν; t)dν E[νt jx = xt ] R+ t Mixing factor η tunes between stochastic and local volatility Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 3 / 19 Package RHestonSLV: Calibration and Pricing Calibration: Calculate Heston parameters fκ, θ; σ; ρ, vt=0g and σLV (xt ; t) Compute p(xt ; ν; t) either by Monte-Carlo or PDE to get to the leverage function Lt (xt ; t) Infer the mixing factor η from prices of exotic options Package HestonSLV 3 Monte-Carlo and PDE calibration 3 Pricing of vanillas and exotic options like double-no-touch barriers 3 Implementation is based on QuantLib, www.quantlib.org Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 4 / 19 Cheat Sheet: Link between SDE and PDE Starting point is a linear, multidimensional SDE of the form: dxt = µ(xt ; t)dt + σ(xt ; t)dW t Feynman-Kac: the price of a derivative u(xt ; t) with boundary condition u(xT ; T ) at maturity T is given by: n n X 1 X T @t u + µi @x u + σσ @x @x u − ru = 0 k 2 kl k l k=1 k;l=1 Fokker-Planck: the time evolution of the probability density function p(xt ; t) with the initial condition p(x; t = 0) = δ(x − x0) is given by: n n X 1 X h T i @t p = − @x [µi p] + @x @x σσ p k 2 k l kl k=1 k;l=1 Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 5 / 19 Fokker-Planck Forward Equation The corresponding Fokker-Planck equation for the probability density p : R × R≥0 × R≥0 ! R≥0; (x; ν; t) 7! p(x; ν; t) is: 1 h i 1 @ p = @2 L2νp + η2σ2@2 [νp] + ησρ∂ @ [Lνp] t 2 x 2 ν x ν 1 −@ r − q − L2ν p − @ [κ (θ − ν) p] x 2 ν Numerical solution of the PDE is cumbersome due to difficult boundary conditions and the δ-distribution as the initial condition. PDE can be efficiently solved by using operator splitting schemes, preferable the modified Craig-Sneyd scheme. Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 6 / 19 Calibration: Fokker-Planck Forward Equation 3 Zero-Flux boundary condition for ν = fνmin; νmax g 1− 2κθ 3 Reformulate PDE in terms of q = ν σ2 or z = ln ν if the Feller constraint is violated 3 Prediction-Correction step for L(xt+∆t ; t + ∆t) 3 Non-uniform grids are a key factor for success 3 Includes adaptive time step size and grid boundaries to allow for rapid changes of the shape of p(xt ; ν; t) for small t 3 Semi-analytical approximations of initial δ-distribution for small t Corresponding Feynman-Kac backward PDE is much easier to solve. Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 7 / 19 Calibration: Monte-Carlo Simulation The quadratic exponential discretization can be adapted to simulate the Heston SLV model efficiently. σLV (xt ;t) Reminder: L(xt ; t) = p E[νt jx=xt ] 1 Simulate the next time step for all calibration paths 2 i i i Define set of n bins bi = fxt ; xt + ∆xt g and assign paths to bins 3 Calculate expectation value ei = E[νt jx 2 bi ] over all paths in bi σLV (xt ;t) 4 Define L(xt 2 b ; t) = i ei 5 t t + ∆t and goto 1 Advice: Use Quasi-Monte-Carlo simulations with Brownian bridges. Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 8 / 19 Calibration: Test Bed Motivation: Set-up extreme test case for the SLV calibration Local Volatility: σLV (x; t) ≡ 30% Heston parameters: S0 = 100; ν0 = 0:09; κ = 1:0; θ = 0:06; σ = 0:4; ρ = −75% 2κθ Feller condition is violated with σ2 = 0:75 Implied volatility surface of the Heston model and the Local Volatility model differ significantly. Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 9 / 19 Calibration: Fokker-Planck PDE vs Monte-Carlo Fokker-Planck Forward Equation, η=1.00 Monte-Carlo Simulation, η=1.00 2.5 2.5 2.5 2.5 2.0 2.0 2.0 2.0 1.5 1.5 1.0 1.0 1.5 1.5 Leverage Function L(x,t) Function Leverage L(x,t) Function Leverage 0.5 0.5 4 1.0 4 1.0 3 3 7 2 2 6 Time 6 Time 5 5 1 0.5 1 0.5 4 4 3 2 ln(S) 3 ln(S) Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 10 / 19 Calibration Sanity Check: Round-Trip Error for Vanillas Round-Trip Error for 1Y Maturity Monte-Carlo Fokker-Planck 30.05 30.10 Implied Volatility (in %) Implied Volatility 29.90 29.95 30.00 50 100 150 200 250 Strike Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 11 / 19 Case Study: Delta of Vanilla Option Vanilla Put Option: 3y maturity, S0=100, strike=100 Delta of ATM Put Option Heston Black-Scholes Heston Minimum-Variance Local Vol SLV -0.30 -0.25 Delta -0.40 -0.35 0.0 0.2 0.4 0.6 0.8 1.0 η Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 12 / 19 Choose the Forward Volatility Skew Dynamics Interpolate between the Local and the Heston skew dynamics by tuning η between 0 and 1. Forward Starting Option: max(0, S2y - α*S1y) 38 η=1.00 η=0.50 η=0.25 η=0.00 32 34 36 Implied Forward Volatility (in %) Volatility Implied Forward 26 28 30 0.5 1.0 1.5 2.0 Strike α Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 13 / 19 Case Study: Barrier Option Prices DOP Barrier Option: 3y maturity, S0=100, strike=100 Barrier Option Pricing Local Vol vs SLV 0.30 0.35 η = 1.0 η = 0.5 η = 0.2 SLV η = 0.1 - NPV local NPV 0.00 0.05 0.10 0.15 0.20 0.25 0 20 40 60 80 100 Barrier Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 14 / 19 Case Study: Delta of Barrier Options DOP Barrier Option: 3y maturity, S0=100, strike=100 Barrier Option Δlocal vs ΔSLV 0.00 η = 1.0 SLV η = 0.5 Δ η = 0.2 - η = 0.1 local Δ -0.15 -0.10 -0.05 0 20 40 60 80 100 Barrier Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 15 / 19 Case Study: Double-No-Touch Options Knock-Out Double-No-Touch Option: 1y maturity, S0=100 Double No Touch Option Stochastic Local Volatility vs. Black-Scholes Prices 0.15 η=1.00 η=0.75 η=0.50 η=0.25 η=0.00 BS - NPV 0.05 0.10 SLV NPV -0.05 0.00 0.0 0.2 0.4 0.6 0.8 1.0 NPVBS Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 16 / 19 Summary: Heston Stochastic Local Volatility RHestonSLV: A package for the Heston Stochastic Local Volatility Model Monte-Carlo Calibration Calibration via Fokker-Planck Forward Equation Supports pricing of vanillas and exotic options Implementation is based on QuantLib 1.8 and Rcpp Package source code including all examples shown is on github https://github.com/klausspanderen/RHestonSLV Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 17 / 19 Literature J. Göttker-Schnetmann and K. Spanderen. Calibration of the Heston Stochastic Local Volatility Model. http://hpc-quantlib.de/src/slv.pdf. K.J. in t’Hout and S. Foulon. ADI Finite Difference Schemes for Option Pricing in the Heston Model with Correlation. International Journal of Numerical Analysis and Modeling, 7(2):303–320, 2010. Y. Tian, Z. Zhu, G. Lee, F. Klebaner and K. Hamza. Calibrating and Pricing with a Stochastic-Local Volatility Model. http://ssrn.com/abstract=2182411. A. Stoep, L. Grzelak and C. Oosterlee,. The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation. http://papers.ssrn.com/abstract_id=2278122. Klaus Spanderen Heston Stochastic Local Volatility Model 2016-05-20 18 / 19.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us