On the Use of Hydrogen as the Future Aviation Fuel Martim Novais Cálão Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisors: Prof. Fernando José Parracho Lau Dr. Frederico José Prata Rente Reis Afonso Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. Fernando José Parracho Lau Member of the Committee: Prof. Afzal Suleman December 2018 ii Acknowledgments First and foremost, I would like to thank my supervisor at Airbus, Mr. Matthieu Meaux, for his guid- ance, expertise, trust and endless enthusiasm throughout the internship. I would also like to extend my gratitude to the Team-X for their experience and valuable advices, and the whole TPR Department of Airbus CTO in Toulouse for receiving me so well and making these six months such a pleasant experi- ence. I would also like to address a big thank you to my supervisors at Instituto Superior Tecnico,´ Prof. Fernando Lau and Dr. Frederico Afonso for their constant availability and support in preparing this thesis, and to Prof. Inesˆ Esteves Ribeiro for her insights in Life Cycle Assessment. Last but not least, for the unconditional support of my family, friends and girlfriend, Mafalda, through- out my academic life I can only be grateful. Thank you! iii iv Resumo A presente dissertac¸ao˜ foi realizada durante um estagio´ de seis meses no CTO da Airbus e descreve o projeto conceptual de aeronaves regionais com propulsao˜ a hidrogenio,´ atraves´ de uma plataforma de Otimizac¸ao˜ Multidisciplinar. A implementac¸ao,˜ na referida plataforma, dos modelos de alguns compo- nentes da aeronave e´ detalhada, nomeadamente da unidade propulsiva, dos tanques de hidrogenio,´ e da respetiva integrac¸ao˜ na fuselagem do aviao.˜ Sao˜ estudadas diferentes configurac¸oes˜ de aeronave e alguns cenarios´ alternativos de modo a explorar um maior numero´ de poss´ıveis soluc¸oes˜ para o grande problema abordado: o impacto ambiental da aviac¸ao.˜ A performance das aeronaves a hidrogenio´ e´ com- parada com a da aeronave de referenciaˆ movida a querosene, atraves´ de indicadores como o consumo energetico´ e as emissoes˜ de poluentes. A avaliac¸ao˜ do ciclo de vida de cada tipo de combust´ıvel e uma discussao˜ preliminar relativa a` viabilidade economica´ da utilizac¸ao˜ de hidrogenio´ revelam a mudanc¸a de paradigma inerente a` transic¸ao˜ energetica.´ Os resultados deste estudo provam a viabilidade do projeto de aeronaves a hidrogenio´ e os seus benef´ıcios de um ponto de vista ambiental, desde que produzido a partir de energias renovaveis.´ O metano l´ıquido surge como uma alternativa muito interessante, na medida em que permite vislumbrar um cenario´ de transic¸ao˜ tendo em conta os atuais desafios economicos´ associados a` produc¸ao˜ de hidrogenio.´ Palavras-chave: Otimizac¸ao˜ Multidisciplinar, Projeto de Aeronaves, Avaliac¸ao˜ do Ciclo de Vida, combust´ıveis alternativos, hidrogenio´ v vi Abstract The present work was performed during a six-month internship at Airbus CTO and describes the con- ceptual design of hydrogen-fueled regional aircraft using a Multidisciplinary Design Optimization (MDO) tool. The implementation of the aircraft models inside the tool is detailed, notably with regard to the propulsion plant and the hydrogen tanks design and integration. Distinct hydrogen aircraft architectures are studied and alternative scenarios are modeled so as to explore a greater number of potential solu- tions for the main issue addressed: the environmental impact of aviation. The main aircraft performance figures to be compared with the kerosene-powered reference are energy consumption and pollutant emissions. The life cycle assessment of the different fuel types and a preliminary discussion on the economic viability of hydrogen as a fuel reveal the paradigm shift inherent to the energy transition. The results prove the feasibility of hydrogen aircraft from a design perspective and its benefits from an environmental point of view as long as produced using renewable energies. Liquid methane appears as a very interesting candidate to enable a potential transition scenario given the current economic challenges related to the hydrogen production. Keywords: Multidisciplinary Design Optimization, Overall Aircraft Design, Life Cycle Assess- ment, alternative fuels, hydrogen. vii viii Contents Acknowledgments........................................... iii Resumo.................................................v Abstract................................................. vii List of Tables.............................................. xi List of Figures............................................. xiii Nomenclature.............................................. xv Glossary................................................ xvii 1 Introduction 1 1.1 Motivation and Topic Overview.................................1 1.2 Background............................................2 1.3 Company Presentation......................................4 1.3.1 Airbus...........................................5 1.3.2 Airbus CTO........................................5 1.3.3 Technology Planning and Roadmapping........................5 1.3.4 Airbus Group Team-X..................................6 1.4 Objectives.............................................6 1.5 Methodology...........................................6 1.6 Thesis Outline..........................................7 2 Hydrogen as an Aviation Fuel9 2.1 Hydrogen Properties.......................................9 2.2 Safety............................................... 10 2.3 New Aircraft Concept....................................... 10 2.3.1 Propulsive Unit...................................... 11 2.3.2 Hydrogen Tanks..................................... 12 2.4 Environmental and Economic Impacts............................. 14 3 Multidisciplinary Design Optimization 17 3.1 MDO Overview.......................................... 17 3.2 XMDO Platform.......................................... 19 3.2.1 Mission and Vehicle Description............................ 19 ix 3.2.2 Operation Modes..................................... 21 4 Implementation 25 4.1 Aircraft Configurations...................................... 25 4.2 Mission Requirements...................................... 26 4.3 Physical Models......................................... 26 4.3.1 Turboshaft......................................... 27 4.3.2 Hydrogen Tanks..................................... 27 4.3.3 Fuselage......................................... 34 4.4 New XMDO Functionalities................................... 35 4.5 Life Cycle Assessment...................................... 35 4.5.1 Goal and Scope Definition................................ 36 4.5.2 Inventory Analysis (LCI)................................. 37 5 Results 41 5.1 Problem Description....................................... 41 5.2 Solution.............................................. 42 5.3 Alternative Scenario Exploration................................ 43 5.3.1 Methane.......................................... 44 5.3.2 Kerosene for the Reserves............................... 45 5.4 Life Cycle Assessment...................................... 45 5.4.1 Impact Assessment (LCIA)............................... 45 5.4.2 Interpretation....................................... 45 5.5 Fuel Pricing............................................ 46 6 Conclusions and Future Work 49 6.1 Conclusions............................................ 49 6.2 Future Work............................................ 50 Bibliography 51 x List of Tables 2.1 Liquid hydrogen and kerosene properties........................... 10 2.2 Liquid hydrogen and synthetic kerosene combustion properties............... 11 2.3 Foam and MLI advantages and disadvantages........................ 14 3.1 Advantages and disadvantages of the L-BFGS-B and CMA-ES algorithms......... 23 4.1 Top-level requirements...................................... 27 4.2 Cryogenic tank model input parameters............................ 28 4.3 Tank wall materials properties.................................. 29 4.4 Empirical coefficients for different MLIs............................. 32 4.5 Inventory analysis for two kerosene stream types....................... 38 4.6 Baseline GHG emissions from jet fuel production....................... 38 4.7 Inventory analysis for two H2 production pathways...................... 39 4.8 Hydrogen and kerosene combustion products......................... 40 4.9 GWP values for a 100-year time horizon defined in the IPCC Fifth Assessment report [31] 40 4.10 Global warming potential (in g CO2eq/MJ fuel) of kerosene and hydrogen......... 40 5.1 MDO results for all the aircraft configurations studied..................... 43 5.2 Methane properties....................................... 44 xi xii List of Figures 1.1 In-flight CO2 emissions forecast for international aviation, from 2005 to 2050.......2 1.2 Airbus A350XWB’s ”sharklets”.................................3 1.3 First hydrogen-fueled aircraft (Tupolev Tu-155)........................4 1.4 Team-X’s hierarchy branch...................................4 1.5 TPR valuation chain.......................................5 2.1 Fuel leak simulation....................................... 11 2.2 Hydrogen tanks concept..................................... 13 2.3 Tank wall structures studied in this work............................ 13 2.4 Rear and forward hydrogen tanks with a catwalk between the cockpit and the cabin.... 14 3.1 Aircraft design disciplines...................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages72 Page
-
File Size-