General Relativity Fall 2018 Lecture 10: Integration, Einstein-Hilbert Action

General Relativity Fall 2018 Lecture 10: Integration, Einstein-Hilbert Action

<p>General Relativity Fall 2018 <br>Lecture 10: Integration, Einstein-Hilbert action </p><p>Yacine Ali-Ha¨ımoud </p><p>(Dated: October 3, 2018) </p><p>σ</p><p>HW comment: T<sup style="top: -0.3012em;">σ </sup>antisym in µν does NOT imply that T<sub style="top: 0.2053em;">µν </sub>is antisym in µν. </p><p>µν </p><p></p><ul style="display: flex;"><li style="flex:1">Volu<sub style="top: 0.403em;">0</sub>me element –&nbsp;Consider a LICS with primed coordinates.&nbsp;The 4-volume element is dV = d<sup style="top: -0.3012em;">4</sup>x<sup style="top: -0.3012em;">0 </sup></li><li style="flex:1">=</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>dx<sup style="top: -0.3012em;">0 </sup>dx<sup style="top: -0.3012em;">1 </sup>dx<sup style="top: -0.3012em;">2 </sup>dx<sup style="top: -0.3012em;">3 </sup>. If we change coordinates, we have </p><p>ꢀꢀꢀ<br>ꢀꢀꢀ</p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>0</p><p>∂x<sup style="top: -0.3012em;">µ </sup>∂x<sup style="top: -0.2398em;">µ </sup></p><p>d<sup style="top: -0.3427em;">4</sup>x<sup style="top: -0.3427em;">0 </sup>= det </p><p>d<sup style="top: -0.3427em;">4</sup>x. </p><p>(1) </p><p>ꢀꢀ<br>ꢀꢀ</p><p>Now, the metric components change as </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∂x<sup style="top: -0.3013em;">µ </sup>∂x<sup style="top: -0.3013em;">ν </sup></li><li style="flex:1">∂x<sup style="top: -0.3013em;">µ </sup>∂x<sup style="top: -0.3013em;">ν </sup></li></ul><p></p><p>0</p><p>g<sub style="top: 0.1245em;">µ ν </sub></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>η<sub style="top: 0.1245em;">µ ν </sub></p><p>0</p><p>g<sub style="top: 0.1245em;">µν </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p>,</p><p>(2) </p><p></p><ul style="display: flex;"><li style="flex:1">∂x<sup style="top: -0.2398em;">µ </sup>∂x<sup style="top: -0.2398em;">ν </sup></li><li style="flex:1">∂x<sup style="top: -0.2398em;">µ </sup>∂x<sup style="top: -0.2398em;">ν </sup></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>since the metric components are η<sub style="top: 0.1245em;">µ ν&nbsp;</sub>in the LICS. Seing this as a matrix operation and taking the determinant, we find </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>2</p><p>0</p><p>∂x<sup style="top: -0.3012em;">µ </sup>∂x<sup style="top: -0.2398em;">µ </sup></p><p>det(g<sub style="top: 0.1245em;">µν</sub>) = − det </p><p>.</p><p>(3) <br>Hence, we find that the 4-volume element is </p><p>qp</p><p>√</p><p>dV = − det(g<sub style="top: 0.1245em;">µν</sub>)d<sup style="top: -0.3428em;">4</sup>x ≡ −g d<sup style="top: -0.3428em;">4</sup>x ≡ |g| d<sup style="top: -0.3428em;">4</sup>x. </p><p>(4) (5) <br>The integral of a scalar function f is well defined: given any coordinate system (even if only defined locally): </p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p>p</p><p></p><ul style="display: flex;"><li style="flex:1">f dV = </li><li style="flex:1">f</li><li style="flex:1">|g| d<sup style="top: -0.3428em;">4</sup>x. </li></ul><p></p><p>We can only define the integral of a scalar function. The integral of a vector or tensor field is mean- </p><p>ingless in curved spacetime. Think&nbsp;of the integral as a sum.&nbsp;To sum vectors, you need them to belong to the same vector space. There is no common vector space in curved spacetime. <br>Only in flat spacetime can we define such integrals.&nbsp;First parallel-transport the vector field to a single point of spacetime (it doesn’t matter which one).&nbsp;This operation is independent of the path in flat spacetime, hence well defined. Then sum these components to perform the integral. </p><p>Covariant divergence– The covariant divergence of a vector field is </p><p>∇<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3428em;">µ </sup>= ∂<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3428em;">µ </sup>+ Γ<sup style="top: -0.3428em;">µ</sup><sub style="top: 0.2053em;">µν</sub>V <sup style="top: -0.3428em;">ν</sup>. </p><p>(6) <br>The contracted Christoffel symbol is </p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p>2</p><p>Γ<sup style="top: -0.3427em;">µ</sup><sub style="top: 0.2053em;">µν </sub></p><p>=</p><p>g<sup style="top: -0.3427em;">µλ </sup>(∂<sub style="top: 0.1246em;">ν</sub>g<sub style="top: 0.1246em;">µλ </sub>+ ∂<sub style="top: 0.1246em;">µ</sub>g<sub style="top: 0.1246em;">νλ </sub>− ∂<sub style="top: 0.1246em;">λ</sub>g<sub style="top: 0.1246em;">µν</sub>) =&nbsp;g<sup style="top: -0.3427em;">µλ</sup>∂<sub style="top: 0.1246em;">ν</sub>g<sub style="top: 0.1246em;">µλ </sub>+ g<sup style="top: -0.3427em;">µλ</sup>∂<sub style="top: 0.1499em;">[λ</sub>g<sub style="top: 0.1499em;">µ]ν </sub></p><p>=</p><p>g<sup style="top: -0.3427em;">µλ</sup>∂<sub style="top: 0.1246em;">ν</sub>g<sub style="top: 0.1246em;">µλ </sub></p><p>.</p><p>(7) </p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p>Let us now recall that the determinant and inverse of a matrix (here, the metric g<sub style="top: 0.1245em;">µν</sub>) can be expressed in terms of the comatrix C<sub style="top: 0.1245em;">µν</sub>, which is the matrix made of the determinants of the (n − 1) × (n − 1) submatrices obtained by deleting row µ and column ν (and then multiplying by (−1)<sup style="top: -0.3012em;">µ+ν)</sup>): </p><p>X</p><p>g ≡ det(g<sub style="top: 0.1245em;">µν</sub>) = </p><p>g<sub style="top: 0.1245em;">µν</sub>C<sub style="top: 0.1245em;">µν </sub></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1">for any fixed ν (not summed over!), </li><li style="flex:1">(8) </li></ul><p></p><p>µ</p><p>1</p><p>g<sup style="top: -0.3428em;">µν </sup></p><p>=</p><p>C<sub style="top: 0.1246em;">µν </sub></p><p>,</p><p>(9) </p><p>g</p><p>2<br>Therefore, we get </p><p>So, we find </p><p>p</p><p>∂</p><p>|g| </p><p></p><ul style="display: flex;"><li style="flex:1">1 1&nbsp;∂g </li><li style="flex:1">1 1 </li><li style="flex:1">1</li></ul><p>2</p><p>ν</p><p>=</p><p>∂<sub style="top: 0.1245em;">ν</sub>g<sub style="top: 0.1245em;">µλ </sub></p><p>=</p><p>C<sub style="top: 0.1245em;">µλ</sub>∂<sub style="top: 0.1245em;">ν</sub>g<sub style="top: 0.1245em;">µλ </sub></p><p>=</p><p>g<sup style="top: -0.3428em;">µλ</sup>∂<sub style="top: 0.1245em;">ν</sub>g<sub style="top: 0.1245em;">µλ </sub>= Γ<sup style="top: -0.3428em;">µ</sup><sub style="top: 0.2052em;">µν </sub></p><p>.</p><p>(10) </p><p>p</p><p>2 g ∂g<sub style="top: 0.1246em;">µλ </sub></p><p>2 g </p><p>|g| </p><p>pp</p><p>∂</p><p>|g| </p><p>V <sup style="top: -0.3428em;">ν </sup></p><p>1</p><p>ν</p><p>∇<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3428em;">µ </sup>= ∂<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3428em;">µ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">=</li></ul><p></p><p>∂<sub style="top: 0.1245em;">µ</sub>( |g|V <sup style="top: -0.3428em;">µ</sup>). </p><p>(11) </p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">|g| </li><li style="flex:1">|g| </li></ul><p></p><p>Stokes’ theorem – First consider a 4-volume V covered by a single coordinate system.&nbsp;Since ∇<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3012em;">µ </sup>is a scalar field, we may compute its integral over V: </p><p>p</p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><p>∂<sub style="top: 0.1246em;">µ</sub>( |g|V <sup style="top: -0.3012em;">µ</sup>) </p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>∇<sub style="top: 0.1246em;">µ</sub>V <sup style="top: -0.3427em;">µ </sup>dV = </p><p></p><ul style="display: flex;"><li style="flex:1">|g|d<sup style="top: -0.3427em;">4</sup>x = </li><li style="flex:1">∂<sub style="top: 0.1246em;">µ</sub>( |g|V <sup style="top: -0.3427em;">µ</sup>)d<sup style="top: -0.3427em;">4</sup>x. </li></ul><p></p><p>(12) </p><p>p</p><p>|g| </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">V</li><li style="flex:1">V</li></ul><p></p><p>This is just a normal integral in a volume of R<sup style="top: -0.3013em;">4</sup>, for which we can use Stokes’ theorem.&nbsp;We denote by ∂V the boundary of V. We denote by n<sup style="top: -0.3013em;">µ </sup>the vector normal to the surface, with squared norm ±1, pointing outwards if it is spacelike, and inwards if it is timelike. You can check that this is is required to get back Stokes’ theorem – to convince yourself, use coordinates in which the normal to the surface is a coordinate basis vector ∂<sub style="top: 0.1499em;">(µ) </sub>and use the usual Stokes theorem. <br>By definition, this vector is orthogonal to the vectors spanning the tangent space of ∂V, so the metric can be </p><p></p><ul style="display: flex;"><li style="flex:1">(3) </li><li style="flex:1">(3) </li></ul><p></p><p>µν </p><p>rewritten as g<sub style="top: 0.1245em;">µν </sub>= ±n n + g , where g n<sup style="top: -0.3013em;">µ </sup>= 0:&nbsp;g<sup style="top: -0.3013em;">(3) </sup>is the induced metric on the 3-dimensional manifold ∂V. We </p><p>µν </p><ul style="display: flex;"><li style="flex:1">µ</li><li style="flex:1">ν</li></ul><p></p><p>(3) </p><p>µν </p><p>then have det(g<sub style="top: 0.1245em;">µν</sub>) = ± det(g ), i.e. |g| = |g<sup style="top: -0.3013em;">(3)</sup>|. We then get </p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p>qp</p><p>∇<sub style="top: 0.1246em;">µ</sub>V <sup style="top: -0.3428em;">µ </sup>dV = </p><p></p><ul style="display: flex;"><li style="flex:1">n<sub style="top: 0.1246em;">µ </sub>|g|V <sup style="top: -0.3428em;">µ</sup>d<sup style="top: -0.3428em;">3</sup>x = </li><li style="flex:1">n<sub style="top: 0.1246em;">µ</sub>V <sup style="top: -0.3428em;">µ </sup>|g<sup style="top: -0.2398em;">(3)</sup>|d<sup style="top: -0.3428em;">3</sup>x. </li></ul><p></p><p>(13) </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">∂V </li><li style="flex:1">∂V </li></ul><p></p><p>We recognize the last two factors as the frame-invariant volume element on the boundary.&nbsp;This last integral is therefore all coordinate-independent, as it should. <br>Now, if we need to use multiple charts to cover V, we can subdivide it into sub-volumes each with a single coordinate system, and apply Stoke’s theorem there. The integrals on interior surfaces cancel out, and we are left with the boundary of the full volume. </p><p>Action formulation of general relativity –&nbsp;The Einstein field equation G<sub style="top: 0.1245em;">µν </sub>= 8πT<sub style="top: 0.1245em;">µν </sub>(from now we use </p><p>geometric units where G = c = 1) can be derived from an action principle. We want to build an overall action of the form </p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>S = S<sub style="top: 0.1246em;">gravity </sub>+ S<sub style="top: 0.1246em;">M </sub></p><p>≡</p><p>d<sup style="top: -0.3428em;">4</sup>x |g|L<sub style="top: 0.1246em;">gravity </sub></p><p>+</p><p></p><ul style="display: flex;"><li style="flex:1">d<sup style="top: -0.3428em;">4</sup>x |g|L<sub style="top: 0.1246em;">M </sub></li><li style="flex:1">,</li></ul><p></p><p>(14) where S<sub style="top: 0.1245em;">M </sub>is the matter action, and S<sub style="top: 0.1245em;">gravity </sub>only involves the metric tensor, and L are the corresponding frameinvariant Lagrangian densities. The most natural scalar function of curvature that comes to mind is the Ricci scalar, so we may anticipate that L<sub style="top: 0.1245em;">gravity </sub>∝ R. The&nbsp;idea then, is to recover the Eintein field equation by extremizing the action with respect to variations in the metric tensor and in the matter fields (whatever they are). <br>To compute these variations, pick a coordinate system.&nbsp;We want to compute the variation of the action upon </p><ul style="display: flex;"><li style="flex:1">variation of the metric field by δg<sub style="top: 0.1245em;">µν </sub></li><li style="flex:1">:</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p>p</p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>√</p><p></p><ul style="display: flex;"><li style="flex:1">δ( |g|) </li><li style="flex:1">1</li></ul><p>2</p><p>g<sup style="top: -0.3428em;">µν</sup>δg<sub style="top: 0.1245em;">µν </sub>+ δR </p><p>p</p><p>δ( −gR) = Rδ( |g|) +&nbsp;|g| δR = |g| </p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">+ δR </li></ul><p></p><p>=</p><p>|g| <br>|g| </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p>p</p><p>1<br>=</p><p>|g| −&nbsp;Rg<sub style="top: 0.1246em;">µν</sub>δg<sup style="top: -0.3427em;">µν</sup>R + δR </p><p>,</p><p>(15) <br>2</p><p>where we used δ(g<sub style="top: 0.1246em;">µν</sub>g<sup style="top: -0.3012em;">µν</sup>) = 0 = g<sub style="top: 0.1246em;">µν</sub>δg<sup style="top: -0.3012em;">µν </sup>+ g<sup style="top: -0.3012em;">µν</sup>δg<sub style="top: 0.1246em;">µν</sub>. Now we have </p><p>R = g<sup style="top: -0.3428em;">µν</sup>R<sub style="top: 0.1245em;">µν </sub>⇒ δR = R<sub style="top: 0.1245em;">µν</sub>δg<sup style="top: -0.3428em;">µν </sup>+ g<sup style="top: -0.3428em;">µν</sup>δR<sub style="top: 0.1245em;">µν </sub></p><p>.</p><p>(16) (17) <br>This implies </p><p>p</p><p>√</p><p>δ( −gR) =&nbsp;|g| (G<sub style="top: 0.1246em;">µν</sub>δg<sup style="top: -0.3428em;">µν </sup>+ g<sup style="top: -0.3428em;">µν</sup>δR<sub style="top: 0.1246em;">µν</sub>) . <br>3<br>Let us now compute the variation of the Riemann tensor under variation of the metric.&nbsp;To do so, recall that the Riemann tensor is defined in terms of the commutator of the metric-compatible covariant derivative, </p><p>R<sup style="top: -0.3427em;">λ</sup><sub style="top: 0.2053em;">σµν</sub>V <sup style="top: -0.3427em;">σ </sup>≡ ∇<sub style="top: 0.1245em;">µ</sub>∇<sub style="top: 0.1245em;">ν</sub>V <sup style="top: -0.3427em;">λ </sup>− ∇<sub style="top: 0.1245em;">ν</sub>∇<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3427em;">λ</sup>. </p><p>(18) <br>˜</p><ul style="display: flex;"><li style="flex:1">Let us denote by ∇ the unique metric-compatible (and torsion-free) covariant derivative associated with g<sub style="top: 0.1245em;">µν </sub>+ δg<sub style="top: 0.1245em;">µν </sub></li><li style="flex:1">,</li></ul><p>we then have </p><p></p><ul style="display: flex;"><li style="flex:1">σ</li><li style="flex:1">λ</li></ul><p></p><p>δR<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2052em;">σµν</sub>V = ∇<sub style="top: 0.1245em;">µ</sub>∇<sub style="top: 0.1245em;">ν</sub>V − ∇<sub style="top: 0.1245em;">µ</sub>∇<sub style="top: 0.1245em;">ν</sub>V <sup style="top: -0.3428em;">λ </sup>− (µ ↔ ν). </p><p>˜ ˜ <br>(19) </p><p>λ</p><p></p><ul style="display: flex;"><li style="flex:1">˜</li><li style="flex:1">˜</li></ul><p>We denote by Γ<sub style="top: 0.2053em;">µν </sub>the associated Christoffel symbols, and δΓ = Γ − Γ the difference relative to those associated with </p><p>g<sub style="top: 0.1246em;">µν</sub>. We then have, for any vector, </p><p></p><ul style="display: flex;"><li style="flex:1">λ</li><li style="flex:1">λ</li></ul><p></p><p>∇<sub style="top: 0.1245em;">ν</sub>V = ∇<sub style="top: 0.1245em;">ν</sub>V <sup style="top: -0.3428em;">λ </sup>+ δΓ<sub style="top: 0.2053em;">νσ</sub>V <sup style="top: -0.3428em;">σ</sup>, </p><p>(20) <br>˜where the partial derivatives cancel out. Because the left-hand side is a tensor and so is V <sup style="top: -0.3012em;">σ</sup>, we conclude that δΓ is a rank (1, 2) tensor (even if each coefficient individually is not!), symmetric in its lower two indices. Similarly, we have for any rank (1, 1) tensor, </p><p></p><ul style="display: flex;"><li style="flex:1">λ</li><li style="flex:1">σ</li><li style="flex:1">σ</li></ul><p></p><p>∇<sub style="top: 0.1245em;">µ</sub>X = ∇<sub style="top: 0.1245em;">µ</sub>X<sup style="top: -0.3428em;">λ </sup>+ δΓ<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2053em;">µσ</sub>X − δΓ<sub style="top: 0.2053em;">µν</sub>X<sup style="top: -0.3427em;">λ </sup></p><p>(21) <br>˜</p><p></p><ul style="display: flex;"><li style="flex:1">ν</li><li style="flex:1">ν</li><li style="flex:1">ν</li><li style="flex:1">σ</li></ul><p></p><p>We then have </p><p></p><ul style="display: flex;"><li style="flex:1">σ</li><li style="flex:1">λ</li><li style="flex:1">λ</li><li style="flex:1">σ</li></ul><p></p><p>δR<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2053em;">σµν</sub>V = ∇<sub style="top: 0.1245em;">µ</sub>∇<sub style="top: 0.1245em;">ν</sub>V − ∇<sub style="top: 0.1245em;">µ</sub>∇<sub style="top: 0.1245em;">ν</sub>V <sup style="top: -0.3428em;">λ </sup>+ ∇<sub style="top: 0.1245em;">µ</sub>(δΓ<sub style="top: 0.2053em;">νσ</sub>V ) − (µ ↔ ν) </p><p></p><ul style="display: flex;"><li style="flex:1">˜</li><li style="flex:1">˜</li></ul><p>= δΓ<sup style="top: -0.3428em;">λ </sup>∇<sub style="top: 0.1246em;">ν</sub>V <sup style="top: -0.3428em;">σ </sup>− δΓ<sub style="top: 0.2052em;">µ</sub><sup style="top: -0.3428em;">σ</sup><sub style="top: 0.2052em;">ν</sub>∇<sub style="top: 0.1246em;">σ</sub>V <sup style="top: -0.3428em;">λ </sup>+ ∇<sub style="top: 0.1246em;">µ</sub>(δΓ<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2053em;">νσ</sub>V <sup style="top: -0.3428em;">σ</sup>) + O(δΓ<sup style="top: -0.3428em;">2</sup>) − (µ ↔ ν) </p><p>µσ µσ </p><p>= δΓ<sup style="top: -0.3428em;">λ </sup>∇<sub style="top: 0.1245em;">ν</sub>V <sup style="top: -0.3428em;">σ </sup>− δΓ<sub style="top: 0.2052em;">µ</sub><sup style="top: -0.3428em;">σ</sup><sub style="top: 0.2052em;">ν</sub>∇<sub style="top: 0.1245em;">σ</sub>V <sup style="top: -0.3428em;">λ </sup>+ ∇<sub style="top: 0.1245em;">µ</sub>(δΓ<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2053em;">νσ</sub>)V <sup style="top: -0.3428em;">σ </sup>+ δΓ<sub style="top: 0.2052em;">ν</sub><sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2052em;">σ</sub>∇<sub style="top: 0.1245em;">µ</sub>V <sup style="top: -0.3428em;">σ </sup>+ O(δΓ<sup style="top: -0.3428em;">2</sup>) − (µ ↔ ν) </p><p>(22) <br>The second term is symmetric in (µ, nu) so cancels upon antisymmetrization. The sum of the first and fourth terms is also symmetric in (µ, ν), and cancels. We are then left with </p><p>δR<sup style="top: -0.3428em;">λ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">= ∇<sub style="top: 0.1245em;">µ</sub>(δΓ<sup style="top: -0.3428em;">λ </sup>) − ∇<sub style="top: 0.1245em;">ν</sub>(δΓ<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2053em;">µσ</sub>). </li><li style="flex:1">(23) </li></ul><p>(24) (25) </p><p></p><ul style="display: flex;"><li style="flex:1">σµν </li><li style="flex:1">νσ </li></ul><p></p><p>This implies that and so </p><p>δR<sub style="top: 0.1245em;">σν </sub>= δR<sup style="top: -0.3428em;">λ </sup></p><p>= ∇<sub style="top: 0.1245em;">λ</sub>(δΓ<sup style="top: -0.3428em;">λ </sup>) − ∇<sub style="top: 0.1245em;">ν</sub>(δΓ<sup style="top: -0.3428em;">λ</sup><sub style="top: 0.2053em;">λσ</sub>), </p><p></p><ul style="display: flex;"><li style="flex:1">σλν </li><li style="flex:1">νσ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>g<sup style="top: -0.3428em;">σν</sup>δR<sub style="top: 0.1246em;">σν </sub>= ∇<sub style="top: 0.1246em;">λ</sub>(g<sup style="top: -0.3428em;">σν</sup>δΓ<sup style="top: -0.3428em;">λ </sup>) − ∇<sub style="top: 0.1246em;">ν</sub>(g<sup style="top: -0.3428em;">σν</sup>δΓ<sup style="top: -0.3428em;">λ </sup>) = ∇<sub style="top: 0.1246em;">µ </sub>g<sup style="top: -0.3428em;">σν</sup>δΓ<sup style="top: -0.3428em;">µ</sup><sub style="top: 0.2053em;">νσ </sub>− g<sup style="top: -0.3428em;">σµ</sup>δΓ<sup style="top: -0.3428em;">λ </sup></p><p>.</p><p></p><ul style="display: flex;"><li style="flex:1">νσ </li><li style="flex:1">λσ </li><li style="flex:1">λσ </li></ul><p></p><p>Hence, we find that, upon small variations of the metric, we have </p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>δd<sup style="top: -0.3428em;">4</sup>x |g|R = d<sup style="top: -0.3427em;">4</sup>x |g|G<sub style="top: 0.1246em;">µν</sub>δg<sup style="top: -0.3427em;">µν </sup></p><p>+</p><p>d<sup style="top: -0.3427em;">4</sup>x |g|∇<sub style="top: 0.1246em;">µ </sub>g<sup style="top: -0.3427em;">σν</sup>δΓ<sup style="top: -0.3427em;">µ</sup><sub style="top: 0.2053em;">νσ </sub>− g<sup style="top: -0.3427em;">σµ</sup>δΓ<sup style="top: -0.3427em;">λ </sup></p><p>=</p><p>d<sup style="top: -0.3427em;">4</sup>x |g|G<sub style="top: 0.1246em;">µν</sub>δg<sup style="top: -0.3427em;">µν </sup><br>,</p><p>(26) </p><p>λσ </p><p>since the last term is a total divergence and hence integrgates to zero provided metric perturbations (and their partial derivatives) vanish “at infinity”. <br>The convention is to define the Einstein-Hilbert action with a prefactor of 1/(16π): </p><p>Zp</p><p>1</p><p>S = d<sup style="top: -0.3428em;">4</sup>x |g|R + S<sub style="top: 0.1246em;">M </sub><br>,</p><p>(27) <br>16π </p><p>and to define the stress-energy tensor of matter as </p><p>T<sub style="top: 0.1246em;">µν </sub>= − </p><p>2</p><p>δS<sub style="top: 0.1246em;">M </sub></p><p>δg<sup style="top: -0.2398em;">µν </sup></p><p>p</p><p>(28) </p><p>|g| </p><p>By varying the total action with respect to the metric tensor, we see that we recover the Einstein Field Equation G<sub style="top: 0.1246em;">µν </sub>= 8πT<sub style="top: 0.1246em;">µν</sub>. See e.g. Carroll for a couple of worked out examples (scalar field, electromagnetic field). </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us