Binomial Determinants for Tiling Problems Yield to the Holonomic Ansatz

Binomial Determinants for Tiling Problems Yield to the Holonomic Ansatz

Binomial Determinants for Tiling Problems Yield to the Holonomic Ansatz Hao Du, Christoph Koutschan, Thotsaporn Thanatipanonda, Elaine Wong Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences July 2, 2021 S´eminairede Combinatoire de Lyon `al'ENS + 1 + 1 + 1 µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n Example: is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 B C B µ+9 µ+10 µ+11 µ+12 µ+13 C B C B C B µ+10 µ+11 µ+12 µ+13 µ+14 C B C B µ+11 µ+12 µ+13 µ+14 µ+15 C B C @ A µ+12 µ+13 µ+14 µ+15 µ+16 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n 1 / 32 + 1 + 1 + 1 Example: is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 B C B µ+9 µ+10 µ+11 µ+12 µ+13 C B C B C B µ+10 µ+11 µ+12 µ+13 µ+14 C B C B µ+11 µ+12 µ+13 µ+14 µ+15 C B C @ A µ+12 µ+13 µ+14 µ+15 µ+16 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n 1 / 32 + 1 + 1 + 1 Example: is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 B C B µ+9 µ+10 µ+11 µ+12 µ+13 C B C B C B µ+10 µ+11 µ+12 µ+13 µ+14 C B C B µ+11 µ+12 µ+13 µ+14 µ+15 C B C @ A µ+12 µ+13 µ+14 µ+15 µ+16 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n µ History: D0;0(n) was introduced in the work of Andrews in 1979 { 1980 in the context of descending plane partitions: 1 / 32 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n µ Example: D4;6(5) is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 6 7 8 9 10 B C B µ+9 µ+10 µ+11 µ+12 µ+13 C B 6 7 8 9 10 C B C B µ+10 + 1 µ+11 µ+12 µ+13 µ+14 C B 6 7 8 9 10 C B µ+11 µ+12 µ+13 µ+14 µ+15 C B + 1 C @ 6 7 8 9 10 A µ+12 µ+13 µ+14 µ+15 µ+16 6 7 8 + 1 9 10 1 / 32 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n µ+2 Example: D3;5 (5) is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 5 6 7 8 9 B C B µ+9 µ+10 µ+11 µ+12 µ+13 C B 5 6 7 8 9 C B C B µ+10 + 1 µ+11 µ+12 µ+13 µ+14 C B 5 6 7 8 9 C B µ+11 µ+12 µ+13 µ+14 µ+15 C B + 1 C @ 5 6 7 8 9 A µ+12 µ+13 µ+14 µ+15 µ+16 5 6 7 + 1 8 9 1 / 32 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n µ Example: D4;6(5) is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 6 7 8 9 10 B C B µ+9 µ+10 µ+11 µ+12 µ+13 C B 6 7 8 9 10 C B C B µ+10 + 1 µ+11 µ+12 µ+13 µ+14 C B 6 7 8 9 10 C B µ+11 µ+12 µ+13 µ+14 µ+15 C B + 1 C @ 6 7 8 9 10 A µ+12 µ+13 µ+14 µ+15 µ+16 6 7 8 + 1 9 10 1 / 32 + 1 + 1 + 1 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n µ−1 Example: D5;6 (5) is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 6 7 8 9 10 B C B µ+9 + 1 µ+10 µ+11 µ+12 µ+13 C B 6 7 8 9 10 C B C B µ+10 µ+11 + 1 µ+12 µ+13 µ+14 C B 6 7 8 9 10 C B µ+11 µ+12 µ+13 µ+14 µ+15 C B + 1 C @ 6 7 8 9 10 A µ+12 µ+13 µ+14 µ+15 µ+16 6 7 8 9 + 1 10 1 / 32 + 1 + 1 + 1 Families of Binomial Determinants Definition: For n 2 N, for s; t 2 Z, and for µ an indeterminate, define the following (n × n)-determinants: µ µ + i + j + s + t − 4 Ds;t(n) := det + δi+s;j+t ; 16i6n j + t − 1 16j6n µ µ + i + j + s + t − 4 Es;t(n) := det − δi+s;j+t : 16i6n j + t − 1 16j6n µ−1 Example: E5;6 (5) is the determinant of the matrix 0 µ+8 µ+9 µ+10 µ+11 µ+12 1 6 7 8 9 10 B C B µ+9 − 1 µ+10 µ+11 µ+12 µ+13 C B 6 7 8 9 10 C B C B µ+10 µ+11 − 1 µ+12 µ+13 µ+14 C B 6 7 8 9 10 C B µ+11 µ+12 µ+13 µ+14 µ+15 C B − 1 C @ 6 7 8 9 10 A µ+12 µ+13 µ+14 µ+15 µ+16 6 7 8 9 − 1 10 1 / 32 \Conjecture 37" (Lascoux/Krattenthaler 2005) Let µ be an indeterminate and m; r 2 Z. If m > r > 1, then µ m−r 4m+(m−r)(m−r−1)−3r E1;2r−1(2m − 1) = (−1) · 2 2r−3 ! m−1 ! Y Y i!(i + 1)! × i! · (2i)! (2i + 2)! i=0 i=0 2r−2 ! µ 1 Y × (µ − 1) · 2 + r − 2 m−r · (µ + i − 1)2m+2r−2i−1 i=1 r−2 2 ! Y (2m − 2i − 3)! × 2 i=0 (m − i − 2)! (2m + 2i − 1)! (2m + 2i + 1)! 0 m−r−1 1 b 2 c Y 2 2 × B µ + 3i + 3r − 1 − µ − 3m + 3i + 3 C @ 2 2 m−r−2i−1 2 m−r−2iA i=0 2 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 µ µ Es;t(n) Family Ds;t(n) Family t t n odd n even s s t t n even n odd s s 3 / 32 For each path P , let !(P ) be the product of its edge weights.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    168 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us