NUMERICAL SOUND SYNTHESIS Ii Numerical Sound Synthesis

NUMERICAL SOUND SYNTHESIS Ii Numerical Sound Synthesis

NUMERICAL SOUND SYNTHESIS ii Numerical Sound Synthesis Stefan Bilbao November 27, 2007 iii iv Contents Preface xiii 1 Sound Synthesis and Physical Modeling 1 1.1 AbstractDigitalSoundSynthesis . .......... 2 1.1.1 AdditiveSynthesis . .. .. .. .. .. .. .. .. .. .. .. .. .... 3 1.1.2 SubtractiveSynthesis . ..... 5 1.1.3 WavetableSynthesis . .... 5 1.1.4 AMandFMSynthesis.............................. 7 1.1.5 OtherMethods .................................. 8 1.2 PhysicalModeling ................................ ..... 9 1.2.1 LumpedMass-SpringNetworks . ..... 10 1.2.2 ModalSynthesis ................................ .. 11 1.2.3 DigitalWaveguides. .... 13 1.2.4 HybridMethods ................................. 16 1.2.5 DirectNumericalSimulation . ...... 17 1.3 PhysicalModeling: ALargerView . ........ 20 1.3.1 Physical Models as Descended from Abstract Synthesis ............ 20 1.3.2 Connections: Direct Simulation and Other Methods . ........... 21 1.3.3 ComplexityofMusicalSystems . ...... 22 1.3.4 Why? ........................................ 25 2 Time Series and Difference Operators 27 2.1 TimeSeries ...................................... ... 28 2.2 Shift, Difference and AveragingOperators . ............ 29 2.2.1 TemporalWidth ofDifference Operators. ........ 30 2.2.2 CombiningDifferenceOperators . ...... 31 2.2.3 TaylorSeriesandAccuracy . ..... 32 2.2.4 Identities .................................... .. 33 2.3 FrequencyDomainAnalysis . ....... 34 2.3.1 Laplace and z transforms ............................. 34 2.3.2 Frequency Domain Interpretation of Differential and Difference Operators . 35 2.3.3 Recursions and Polynomials in z ......................... 36 2.3.4 Difference Operatorsand Digital Filters . .......... 38 2.4 Energetic Manipulations and Identities . ............. 41 v 2.4.1 Time Derivatives of Products of Functions or Time Series........... 42 2.4.2 ProductIdentities ............................. .... 44 2.4.3 QuadraticForms ................................ .. 44 2.5 Problems ........................................ .. 46 3 The Oscillator 49 3.1 TheSimpleHarmonicOscillator . ........ 50 3.1.1 SinusoidalSolution. ..... 50 3.1.2 Energy........................................ 52 3.1.3 AsFirst-OrderSystem. .... 52 3.1.4 CoupledSystemsofOscillators . ....... 53 3.2 ASimpleScheme................................... ... 53 3.2.1 AsRecursion ................................... 54 3.2.2 Initialization ................................ .... 54 3.2.3 NumericalInstability. ...... 54 3.2.4 FrequencyDomainAnalysis . ..... 55 3.2.5 Accuracy ...................................... 56 3.2.6 EnergyAnalysis ................................ .. 57 3.2.7 ComputationalConsiderations . ....... 58 3.3 OtherSchemes .................................... ... 59 3.3.1 UsingTime-averagingOperators . ....... 59 3.3.2 ASecond-orderFamilyofSchemes . ...... 60 3.3.3 WaveDigitalFilters .. .. .. .. .. .. .. .. .. .. .. .. .... 61 3.3.4 AnExactSolution ............................... .. 64 3.3.5 FurtherMethods ................................ .. 65 3.4 LumpedMass-SpringNetworks . ....... 65 3.5 Loss ............................................ 66 3.5.1 Energy........................................ 67 3.5.2 FiniteDifferenceScheme. ..... 68 3.5.3 NumericalDecayTime. ... 69 3.5.4 AnExactSolution ............................... .. 71 3.6 Sources ......................................... .. 71 3.7 Problems ........................................ .. 72 3.8 ProgrammingExercises . ...... 75 4 The Oscillator in Musical Acoustics 77 4.1 NonlinearOscillators. ........ 78 4.2 LosslessOscillators.. .. .. .. .. .. .. .. .. .. .. .. ........ 78 4.2.1 TheCubicNonlinearOscillator . ....... 79 4.2.2 PowerLawNonlinearities . ..... 82 4.2.3 One-sided Nonlinearities and Collisions: Hammers andMallets ........ 82 4.2.4 Center-limited Nonlinearities . ......... 86 4.3 LossyOscillators ................................ ...... 87 4.3.1 TheBow ...................................... 87 4.3.2 ReedandLipModels .............................. 91 4.4 Problems ........................................ .. 91 vi 4.5 ProgrammingExercises . ...... 93 5 Grid Functions and Finite Difference Operators in One Dimension 95 5.1 PartialDifferentialOperators . .......... 95 5.1.1 ClassificationofPDEs . .... 96 5.1.2 LaplaceandFourierTransforms. ....... 97 5.1.3 Inner Products and Energetic Manipulations . .......... 99 5.2 Grid Functions and Difference Operators in One Dimension .............. 100 5.2.1 Time Difference andAveragingOperators . ........ 101 5.2.2 SpatialDifferenceOperators . ...... 101 5.2.3 Mixed Spatial-Temporal Difference Operators . ........... 102 5.2.4 Interpolation and Spreading Operators . .......... 103 5.2.5 AccuracyofDifferenceOperators . ....... 105 5.2.6 FrequencyDomainInterpretation. ........ 106 5.2.7 Matrix Interpretation of Difference Operators . ............ 108 5.2.8 Boundary Conditions and Imaginary Grid Points . .......... 108 5.2.9 InnerProductsandIdentities . ....... 110 5.2.10 SummationbyParts .. .. .. .. .. .. .. .. .. .. .. .. .. 111 5.2.11 SomeBounds................................... 111 5.2.12 Interpolation and Spreading Revisited . ........... 112 5.3 CoordinateChanges ............................... ..... 112 5.4 Problems ........................................ 113 5.5 ProgrammingExercises . ...... 115 6 The 1D Wave Equation 117 6.1 DefinitionandProperties . ....... 118 6.1.1 LinearArrayofMassesandSprings . ...... 119 6.1.2 Non-dimensionalizedForm. ...... 120 6.1.3 InitialConditions.. .. .. .. .. .. .. .. .. .. .. .. ..... 120 6.1.4 Strikes and Plucks: Time Evolution of Solution . ........... 121 6.1.5 DispersionRelation .. .. .. .. .. .. .. .. .. .. .. .. .... 122 6.1.6 PhaseandGroupVelocity. .... 122 6.1.7 Travelling Wave Solutions . ...... 123 6.1.8 EnergyAnalysis ................................ 123 6.1.9 BoundaryConditions . .. .. .. .. .. .. .. .. .. .. .. .. 124 6.1.10 BoundsonSolutionSize . ..... 126 6.1.11 Modes........................................ 128 6.2 A Simple Finite Difference Scheme . ........ 131 6.2.1 Initialization ................................ .... 132 6.2.2 vonNeumannAnalysis. .. 132 6.2.3 NumericalDispersion . .... 134 6.2.4 Accuracy ...................................... 136 6.2.5 EnergyAnalysis ................................ 137 6.2.6 NumericalBoundaryConditions . ...... 138 6.2.7 Bounds on Solution Size and Numerical Stability . ........... 139 6.2.8 StateSpaceFormandModes . .. 142 vii 6.2.9 OutputandInterpolation . ..... 144 6.2.10 Implementation Details and Computational Requirements........... 145 6.2.11 Digital Waveguide Interpretation . .......... 147 6.3 OtherSchemes .................................... .. 149 6.3.1 A Stencil-width Five Scheme . ..... 149 6.3.2 ACompactImplicitScheme. .... 150 6.4 ModalSynthesis .................................. .... 153 6.5 Loss ............................................ 153 6.5.1 FiniteDifferenceScheme. ..... 154 6.6 A Comparative Study: Physical Modeling Sound Synthesis Methods . 155 6.6.1 Accuracy ...................................... 155 6.6.2 MemoryUse .................................... 155 6.6.3 Precomputation ................................ 156 6.6.4 OperationCount ................................ 156 6.6.5 Stability..................................... 156 6.6.6 GeneralityandFlexibility . ....... 156 6.7 Problems ........................................ 156 6.8 ProgrammingExercises . ...... 159 7 Bars and Linear Strings 161 7.1 TheIdealUniformBar.............................. ..... 161 7.1.1 Dispersion.................................... 162 7.1.2 Energy Analysis and Boundary Conditions . ........ 163 7.1.3 Modes........................................ 164 7.1.4 A Simple Finite Difference Scheme . ...... 166 7.1.5 AnImplicitScheme .............................. 170 7.2 StiffStrings..................................... .... 172 7.2.1 EnergyandBoundaryConditions. ...... 173 7.2.2 Modes........................................ 174 7.2.3 FiniteDifferenceSchemes . ..... 174 7.3 FrequencyDependentLoss. ....... 175 7.3.1 EnergyandBoundaryConditions. ...... 177 7.3.2 FiniteDifferenceSchemes . ..... 177 7.4 CouplingwithBowModels .. .. .. .. .. .. .. .. .. .. .. ..... 178 7.5 Coupling with Hammer and Mallet Models . ........ 180 7.6 MultipleStrings ................................. ..... 181 7.7 PreparedStrings ................................. ..... 183 7.7.1 SpringsandDampers ............................. 183 7.7.2 Masses........................................ 187 7.7.3 RattlingElements .............................. .. 188 7.8 CoupledStringsandBars . ...... 188 7.8.1 ConnectionTypes ............................... 190 7.8.2 FiniteDifferenceSchemes . ..... 191 7.9 Spatial Variation and Stretched Coordinates . .............. 193 7.9.1 StringsofVaryingDensity. ...... 193 7.9.2 BarsofVaryingCross-sectionalArea . ......... 196 viii 7.10Problems ....................................... .. 199 7.11 ProgrammingExercises . ....... 201 8 Nonlinear String Vibration 203 8.1 TheKirchhoff-CarrierStringModel. .......... 203 8.1.1 Amplitude-dependent Pitch . ...... 204 8.1.2 Energy Analysis and Boundary Conditions . ........ 205 8.1.3 FiniteDifferenceSchemes . ..... 205 8.1.4 AQuasi-modalForm.............................. 208 8.1.5 LossandPitchGlides ............................ .. 209 8.1.6 ADigitalWaveguideForm . .. 209 8.1.7 ANonlinearBarModel ............................ 209 8.2 General Planar Nonlinear String Motion . ........... 209 8.2.1 Coupling Between Transverse and Longitudinal Modes and Phantom Partials

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    310 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us