Atmósfera 23(3), 277-294 (2010) A statistical study of seasonal winter rainfall prediction in the Comahue region (Argentina) M. H. GONZÁLEZ Departamento de Ciencias de la Atmósfera y los Océanos - Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Centro de Investigaciones del Mar y la Atmósfera - Consejo Nacional de Investigación Científica y Tecnológica, Universidad de Buenos Aires, Buenos Aires, Argentina and Centro de Investigaciones del Mar y la Atmósfera - 2º piso, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina Corresponding author; e-mail: [email protected] M. M. SKANSI Servicio Meteorológico Nacional – Argentina F. LOSANO Autoridad Interjurisdiccional de las Cuencas de los Ríos Limay, Neuquén y Negro - Argentina Received November 12, 2009; accepted May 7, 2010 RESUMEN El objetivo del presente estudio es establecer las posibles causas que determinan la variabilidad de la precipitación en el período mayo-junio-julio (MJJ) en la cuencas de los ríos Limay y Neuquén. Para establecer la existencia de patrones de circulación previos a este trimestre indicativos de la variabilidad interanual de la precipitación acumulada en MJJ, se correlacionó la precipitación media en el área en cada una de las cuencas con diferentes predictores durante el trimestre precedente (febrero-marzo-abril). Los resultados indicaron que la precipitación en MJJ en ambas cuencas está relacionada con la temperatura de la superficie del mar y las alturas geopotenciales en diferentes niveles observadas previamente en áreas específicas del océano Indico y del Pacífico Sur, tal vez debido a los trenes de onda que se inician en esas zonas y que al llegar a proximidades de la Patagonia se manifiestan como sistemas precipitantes. También se observaron buenas correlaciones con la temperatura de la superficie del mar en el Atlántico, en la costa de Brasil y Argentina asociada al ingreso de vapor hacia el continente y con el viento zonal y meridional en las inmediaciones de la cuenca, responsables de la advección de aire húmedo. La aplicación de esquemas de predicción utilizando una regresión lineal múltiple dio como resultado que las variables elegidas explican el 51% de la variabilidad de la lluvia en MJJ en la cuenca del Limay y el 44% en la del Neuquén. El esquema se validó utilizando la metodología de validación cruzada, obteniendo correlaciones significativas entre la precipitación observada y la pronosticada en ambas cuencas. El análisis de la lluvia del invierno 2009 mostró que los indicadores de gran escala fueron útiles para detectar con anticipación la precipitación del invierno. 278 M. H. González et al. ABSTRACT The aim of this study is to detect the possible causes of the May-to-July rainfall (MJJ) over the Limay and Neuquén river basins. In order to establish the existence of previous circulation patterns associated with interannual rainfall variability, the mean areal precipitation in each one of the basins was correlated to some predictors during the previous three month period (February-March-April). The result is that MJJ rainfall in both basins is related to sea surface temperature and geopotential heights at different levels previously observed in some specific areas of Indian and Pacific Oceans, probably due to wave trains which begin in those areas and then displace towards the Argentine Patagonia coast, thus generating precipitation systems. There are also observed significant correlations with sea surface temperature in the Atlantic Ocean over Brazil and the Argentine coast, associated with the water vapor income into the continent and with zonal and meridional wind over the basins, related to humid air advection. The prediction schemes, using multiple linear regressions, showed that the selected variables are the cause of the 51% of the MJJ rainfall variance in the Limay river basin and the 44% in the Neuquén river one. The scheme was validated by using a cross- validation method and significant correlations were detected between observed and forecast rainfall. The 2009 winter rainfall was analyzed and showed that circulation indicators were useful to predict winter rainfall. Keywords: Seasonal prediction, precipitation, multiple linear regression, sea surface temperature, atmospheric circulation. 1. Introduction The Andes Mountain range lies all along the western part of South America. Its height falls from 3000 to 1500 m south of 38º S, in Argentina, and therefore moist air can enter the continent from the Pacific Ocean. Precipitation amounts decrease significantly towards the east (Atlantic Ocean). The Comahue region is located in the area of the Andes range, between 38º and 43º S. There, the low level flow prevails from the west and rainfall is a typical feature in winter. Two important rivers run in this area: Limay and Neuquén. Most of the energy resources of Argentina come from hydroelectric stations operating in the region, like “El Chocón” and “Piedra del Águila”. Obviously, energy production is highly sensitive to water availability and therefore, to the interannual rainfall variability. That is the reason why seasonal rainfall forecast is relevant for planning such activities. The scientific basis of the seasonal climate predictability lies in the fact that slow variations in the earth’s boundary conditions (i.e. sea surface temperature or soil wetness) can influence global atmospheric circulation and thus precipitation. As the skill of seasonal numerical prediction models is still limited, it is essential the statistical study of the probable relationships between some local or remote forcing and rainfall. Some authors have analyzed these relationships in the southern hemisphere. Gissila et al. (2004) related sea surface temperatures with Ethiopian rainfall; Reason (2001) did it for South Africa and Zheng and Frederiksen (2006) derived a linear regression model to predict rainfall in Australia. Singhrattna et al. (2005) developed two methods, a linear regression method and a polynomial-based non parametric method for forecasting Thailand summer monsoon rainfall. The last one showed significant skill especially during extreme wet and dry years. The interannual rainfall variability of the region under study has been partially related to El Niño-Southern Oscillation (ENSO) by many authors. For example, positive correlations between the Southern Oscillation Index (SOI) and precipitation anomalies in the Andes mountains, between 45º S and 55º S, have been found by Schneider and Geis (2004) and rainfall decreased about 15% during strong warm phase of ENSO. Aceituno (1988) and Aceituno and Garreaud (1995) showed that winter precipitation was greater than normal in Central Chile during negative phases of the SOI. Besides, rainfall increased when a greater number of blocking events over the South Pacific Seasonal winter rainfall prediction in the Comahue region 279 were present during warm ENSO events (Rutland and Fuenzalida, 1991; Montecinos and Aceituno, 2003). Compagnucci and Vargas (1998) showed that winters that precede a mature phase of El Niño (La Niña) were characterized by larger (smaller) amounts of snow over the Andes, north of 36º S, which contributed to increase (decrease) the water volume of the rivers. Although ENSO is probably the best comprehended remote forcing, there are some studies which deal with the relationships between rainfall and other circulation patterns. Hence, Compagnucci and Araneo (2005) detected that the interannual variability of river discharges along the Andes was influenced by variations in the Pacific Ocean surface, and that those conditions were not associated with ENSO. Gonzalez and Flores (2008) showed negative correlations between winter rainfall in the Andes mountain range in Central Argentina and sea surface temperature in the tropical Indian Ocean. Gonzalez and Vera (2009) observed the same pattern analyzing interannual rainfall variability in the Comahue region using a principal component analysis. The aim of this paper is to detect the possible relationships between winter rainfall in the Comahue region and both, sea surface temperature in the oceans and atmospheric circulation patterns observed previously to the rainy season. The paper is organized as follows: Section 2 describes the dataset and the methodology; Section 3 presents the rainfall features in Limay (LRB) and Neuquén (NRB) rivers basins (section 3.1), their association with atmospheric circulation and SST anomaly patterns (3.2) and the building of regression models to estimate winter rainfall in both basins (section 3.3), and Section 4 presents the main conclusions. 2. Data and methodology Monthly rainfall data derived from 34 stations from different sources (Servicio Meteorológico Nacional, Secretaría de Hidrología and the Autoridad Interjurisdiccional of the Limay, Neuquén and Negro rivers basins) were used in this study. The stations are located in the southern Andes region between 37º and 43º S, encompassing the Argentinean provinces of Neuquén (Fig. 1). This -36 -37 12 stations in NRB -38 Fig. 1. The province of Neuquén, limiting with Neuquén river in the north and Limay river in the south. Green areas show the -39 8 stations in LRB stations used to generate the mean average rainfall in Neuquén river basin (NRB) and - Limay river basin (LRB). Contour lines Latitude (º) 40 indicate annual rainfall trends (1975-2007) in mm/year. Red line is zero contour and -41 pink area indicates significant trend at 95% confidence level. Dash lines are negative
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-