Quantum Computer

Quantum Computer

Quantum Computer Jaewan Kim [email protected] School of Computational Sciences Korea Institute for Advanced Study KIAS (Korea Institute for Advanced Study) • Established in 1996 • Located in Seoul, Korea • Pure Theoretical Basic Science • Schools – Mathematics – Physics – Computational Sciences • By the computation, For the computation • 20 Prof’s, 2 Distinguished Prof’s, 20 KIAS Scholars, 70 Research Fellows, 20 Staff Members Quantum Information Physics Science Quantum Information Science Quantum Parallelism à Quantum computing is exponentially larger and faster than digital computing. Quantum Fourier Transform, Quantum Database Search, Quantum Many-Body Simulation (Nanotechnology) No Clonability of Quantum Information, Irrevesability of Quantum Measurement à Quantum Cryptography (Absolutely secure digital communication) Quantum Correlation by Quantum Entanglement à Quantum Teleportation, Quantum Superdense Coding, Quantum Cryptography, Quantum Imaging Twenty Questions • Animal … • Four legs? Yes(1) or No(0) • Herbivorous? Yes(1) or No(0) . Yes(1) or No(0) . • Tiger? It from Bit John A. Wheeler Yoot =Ancient Korean Binary Dice x x x x x x x x x 1 0 1 1 Taegeukgi (Korean National Flag) 1 0 Qubit j =+ab01 Qubit = quantum bit (binary digit) Businessweek 21 Ideas for the 21st Century Transition to Quantum • Mathematics: Real à Complex • Physics: Classical à Quantum • Digital Information Processing – Hardwares by Quantum Mechanics – Softwares and Operating Systems by Classical Ideas • Quantum Information Processing – All by Quantum Ideas Quantum Information Processing • Quantum Computer NT – Quantum Algorithms: Softwares • Simulation of quantum many-body systems • Factoring large integers • Database search IT – Experiments: Hardwares • Ion Traps BT • NMR • Cavity QED, etc. Quantum Information Processing • Quantum Communication – Quantum Cryptography IT • Absolutely secure digital communication • Generation and Distribution of Quantum Key – ~100 km through optical fiber (Toshiba) – 23.4 km wirelessà secure satellite communication – Quantum Teleportation • Photons • Atoms, Molecules • Quantum Imaging and Quantum Metrology Cryptography and QIP Giving disease, -병 주고 약 주고- Giving medicine. Out with the old, In with the new. • Public Key Cryptosystem (Asymmetric) – Computationally Secure – Based on unproven mathematical conjectures – Cursed by Quantum Computation • One-Time Pad (Symmetric) – Unconditionally Secure – Impractical – Saved by Quantum Cryptography KIAS-ETRI, December 2005. 25 km Quantum Cryptography T.G. Noh and JK Classical Computation • Hilbert (1900): 23 most challenging math problems – The Last One: Is there a mechanical procedure by which the truth or falsity of any mathematical conjecture could be decided? • Turing – Conjecture ~ Sequence of 0’s and 1’s – Read/Write Head: Logic Gates – Model of Modern Computers Turing Machine Finite State Machine: Head q¢ ìq¢ = f(,)qs ï ís¢ = gqs(,) q ï îd= dqs(,) d Bit {0,1} ss® ' Infinitely long tape: Storage Bit and Logic Gate 0à1 “Universal” 1à0 NOT NAND 00à0 01à0 “Reversible” 10à0 AND 11à1 C-NOT 00à0 01à1 10à1 OR 11à1 CCN ( Toffoli ) “Universal” 00à0 “Reversible” 01à1 10à1 XOR 11à0 C-Exch ( Fredkin ) DNA Computing Adleman • Bit { 0, 1 } è Tetrit (?) { A, G, T, C} • Gate è Enzyme • Parallel Ensemble Computation – Hamiltonian Path Problem Complexity N= (# bits to describe the problem, size of the problem) (#steps to solve the problem) = Pol(N) à “P(polynomial)”: Tractable, easy (#steps to verify the solution) = Pol(N) à “NP (nondeterministic polynomial)”: Intractable NPÉP NP NP¹P or P NP=P? Quantum Information • Bit {0,1} 2 2 è Qubit a0+b1 with ab+=1 • N bits è 2N states, One at a time Linearly parallel computing AT BEST • N qubits è Linear superposition of 2N states at the same time Exponentially parallel computing è Quantum Parallelism Deutsch But when you extract result, you cannot get all of them. Quantum Algorithms 1. [Feynman] Simulation of Quantum Physical Systems with HUGE Hilber space ( 2N-D ) e.g. Strongly Correlated Electron Systems 2. [Peter Shor] Factoring large integers, period finding 1/3 tq ∝ Pol (N) tcl ∼ Exp (N ) 3. [Grover] Searching tq ∝ÖN átclñ ~ N/2 Digital Computer N bits 1× N N bits Digital Computers in parallel N bits m{ mN× N bits Quantum Computer : Quantum Parallelism N bits 2N N bits Quantum Gates Time-dependent Schrödinger Eq. Unitary Transform ¶ iHh yy= Norm Preserving ¶t Reversible y(t)==e-iHt / h yy(0)Ut()(0) æö10 æ10öæö01 P(q )== IX = ç÷iq ç÷ç÷ èø0 e è01øèø10 æ10öæ0-1ö1 æö11 Z=P(p )=ç÷ Y= XZH=ç÷ = ç÷ è0--1øè10ø2 èø11 1æ11öæ11ö11æö H 0=ç÷ç÷==+ç÷ ( 01) Hadamard 2è1-1øè01ø22èø 1æ11öæ01ö11æö H 1=ç÷ç÷=ç÷=-( 01) 2è1--1øè11ø22èø Hadamard Gate H12ÄHHÄ...ÄN 012Ä0ÄÄ...0N 111 =( 0+1) Ä( 0+1) Ä+...01( ) 2112222 NN 1 =( 0012...0N+1102...0NN++...1121...1 ) 2N N-1 1 2 = k()binary expression N å 2 k=0 Universal Quantum Gates General Rotation of a Single Qubit æöæqqö-if æö ç÷cosç÷-ie sinç÷ è22øèø V(,)qf =ç÷V ç÷+if æqqöæö ç÷-ie sinç÷cosç÷ èøè22øèø Xc: CNOT (controlled - NOT) or XOR æ10öæ10öæ00öæö01 ç÷Äç÷ +Ä ç÷ç÷ è00øè01øè01øèø10 = 00ÄIX+Ä11 Xac b=Åaab Quantum Circuit/Network DiVincenzo, Qu-Ph/0002077 Scalable Qubits Unitary evolution : Deterministic : Reversible Initial State Universal Gates |0ñ X M … X H CX |Yñ |Yñ |0ñ H 1 2 13 M |0ñ t M Quantum measurement Cohere, : Probabilistic Not Decohere : Irreversible change √ Quantum Key Distribution Single-Qubit Gates : 3 [BB84,B92] QKD[E91] √ Single- Quantum Repeater : 3 & Two-Qubit Gates Quantum Teleportation√ Quantum Error Correction Single- ³ 40 Quantum Computer & Two-Qubit Gates 7-Qubit QC√ ³ 100 Physical systems actively considered for quantum computer implementation • Liquid-state NMR • Electrons on liquid He • NMR spin lattices • Small Josephson junctions • Linear ion-trap – “charge”qubits spectroscopy – “flux”qubits • Neutral-atom optical • Spin spectroscopies, lattices impurities in semiconductors • Cavity QED + atoms • Coupled quantum dots • Linear optics with – Qubits: spin,charge, single photons excitons • Nitrogen vacancies in – Exchange coupled, diamond cavity coupled 15=´35 Chuang Nature 414, 883-887 (20/27 Dec 2001) OR QP/0112176 Concept device: spin-resonance transistor R. Vrijen et al, Phys. Rev. A 62, 012306 (2000) Quantum-dot array proposal Ion Traps • Couple lowest centre-of-mass modes to internal electronic states of N ions. Quantum Error Correcting Code Three Bit Code Encode Recover Decode f channel f 0 Um1m2 0 noise 0 M 0 M Molding a Quantum State |0ñ X M … X H CX |Yñ |Yñ |0ñ H 1 2 13 M |0ñ t M Molding Sculpturing a Quantum State - Cluster state quantum computing – - One-way quantum computing -- |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ 1. Initialize each qubit in |+ñ state. 2. Contolled-Phase between the neighboring qubits. 3. Single qubit manipulations and single qubit measurements only [Sculpturing]. No two qubit operations! 00à00 01à01 10à11 XOR 11à10 X=00ÄIX+Ä11 ABBBAAAA Controlled-NOT é10ùé10ùé00ùéù01 =Ä+Äêúêúêúêú ë00ûABABë01ûë01ûëû10 é1000ùéù0000 ê0100úêú0000 =+êúêú ê0000úêú0001 êúêú 00000010 º ëûABëûAB X éù1000 êú0100 = êú êú0001 êú ëû0010AB Qubit Copying Circuit? x x y =+ab01 x x y =+ab01 ab00+ 11 0 y =+ab01 0 y xyÅ x Entanglement by Two-Qubit Gates a |0ñ + b |1ñ a |0ñ|0ñ + b |1ñ|1ñ |0ñ a |0ñ + b |1ñ a |0ñ|0ñ|0ñ + b |1ñ|1ñ|1ñ |0ñ |0ñ Single Particle Entanglement Single Electron ++ H=-+tc( 1c2cc21) ① ② 1 y =+( 12) 2 1 or y =+(fe12ef12) 2 Single Photon Beam Splitter ② 1 f =+( 1001) ① 2 Quantum Teleportation using a single particle entanglement Lee, JK, Qu-ph/0007106; Phys. Rev. A 63, 012305 (2001) No Cloning Theorem An Unknown Quantum State Cannot Be Cloned. Zurek, Wootters <Proof> U ( a0 ) = aa U ( b0) =¹bb ab 1 Let g=+( ab). 2 1 Then U ( g0) =( aa+¹bb) gg 2 “IfIf an unknow quantum state can be cloned … ”• Quantum States can be measured as accurately as possible ??? |yñ Þ |yñ , |yñ , |yñ , |yñ … measure, measure, … • Commnunication Faster Than Light? |yñ = |0ñA |1ñB - |1ñA |0ñB for “0” = |+ñA |-ñB - |-ñA |+ñB for “1” Communication Faster Than Light? “If”an unknown quantum state can be copied; |yñ = |0ñA |1ñB - |1ñA |0ñB for “0” = |+ñA |-ñB - |-ñA |+ñB for “1” • Alice wants to send Bob “1.” |yñ = |+ñA |-ñB - |-ñA |+ñB for “1” Alice mesures her qubit in {|+>,|->}. • Alice’s state will become |+> or |->. • Bob’s state will become |-> or |+>. Let’s assume it is |+>. |+ñ • Bob makes many copies of this. |+ñ, |+ñ, |+ñ, |+ñ, … He measures them in {|+>, |->}, and gets 100% |+>. He measures them in {|0>, |1>}, and gets 50% |0> and 50% |1>. Thus Bob can conclude that Alice measured her state in {|+>, |->}. Mysterious Connection Between QM & Relativity • Weinberg: Can QM be nonlinear? • Experiments: Not so positive result. • Polchinski, Gisin: If QM is nonlinear, communication faster than light is possible. Cluster State 1. Qubits on lattice sites are initialized to be |+ñ. 01+ +==H 0 2 2. Operate Control-Z on neighboring qubits. Cont-Z =00ÄIX+Ä11 æ10öæ100öæ0öæö01 =Ä+Äç÷ç÷ç÷ç÷ è00øè01øè011øè 0ø æö1000 ç÷0100 = ç÷ ç÷0010 ç÷ è0001- ø 0i æö1000 æöe 000 ç÷ç÷0i 0100 ç÷0e 00 Cont-Z ==ç÷ 0i ç÷0 010 ç÷000e ç ÷ ç÷-pi èø000 -1 èø000e HI=+ss12zzz -+ss12z g æ10öæ10öæ10öæö10 =ç÷Ä+II-Ä-Äç÷ç÷ç÷I è0-1øè0-1øè0--1øèø01 æö111+--1000æö0000 ç÷0111-+-100ç÷0000 = ç÷= ç÷ ç 00-++-11110÷ç÷0000 ç ÷ç÷ èø0 001----111 èø0004- p i H Cont-Z = e 4 |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |0ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ One-way quantum computing |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ |+ñ Optical Lattice, Quantum Dots, Superconductors, etc.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    53 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us