View This Volume's Front and Back Matter

View This Volume's Front and Back Matter

Continuou s Symmetr y Fro m Eucli d to Klei n This page intentionally left blank http://dx.doi.org/10.1090/mbk/047 Continuou s Symmetr y Fro m Eucli d to Klei n Willia m Barke r Roge r How e >AMS AMERICAN MATHEMATICA L SOCIET Y Freehand® i s a registere d trademar k o f Adob e System s Incorporate d in th e Unite d State s and/o r othe r countries . Mathematica® i s a registere d trademar k o f Wolfra m Research , Inc . 2000 Mathematics Subject Classification. Primar y 51-01 , 20-01 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/mbk-47 Library o f Congres s Cataloging-in-Publicatio n Dat a Barker, William . Continuous symmetr y : fro m Eucli d t o Klei n / Willia m Barker , Roge r Howe . p. cm . Includes bibliographica l reference s an d index . ISBN-13: 978-0-8218-3900- 3 (alk . paper ) ISBN-10: 0-8218-3900- 4 (alk . paper ) 1. Geometry, Plane . 2 . Group theory . 3 . Symmetry groups . I . Howe , Roger , 1945 - QA455.H84 200 7 516.22—dc22 200706079 5 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisition s Department, America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 200 7 b y the authors . Al l right s reserved . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 1 2 1 1 1 0 09 0 8 0 7 To Su e and Lyn , for lov e and suppor t This page intentionally left blank Contents Instructor Prefac e i x Student Prefac e xii i Acknowledgments xi x I. Foundation s o f Geometr y i n th e Plan e LI. Th e Rea l Number s 1 1.2. Th e Incidenc e Axiom s 6 1.3. Distanc e an d th e Rule r Axio m 1 7 1.4. Betweennes s 2 2 1.5. Th e Plan e Separatio n Axio m 2 7 1.6. Th e Angula r Measur e Axiom s 3 4 1.7. Triangle s an d th e SA S Axiom 4 6 1.8. Geometri c Inequalitie s 5 6 1.9. Parallelis m 6 2 1.10. Th e Paralle l Postulat e 7 0 1.11. Directe d Angl e Measur e an d Ra y Translatio n 8 4 1.12. Similarit y 9 4 1.13. Circle s 11 0 1.14. Bolzano' s Theore m 11 5 1.15. Axiom s fo r the Euclidea n Plan e 11 9 II. Isometrie s i n the Plane : Product s o f Reflection s ILL Transformation s i n the Plan e 12 1 11.2. Isometrie s i n the Plan e 13 5 11.3. Compositio n an d Inversio n 14 6 11.4. Fixe d Point s an d th e Firs t Structur e Theore m 15 6 11.5. Triangl e Congruenc e an d Isometrie s 16 1 III. Isometrie s i n the Plane : Classificatio n an d Structur e 111.1. Tw o Reflections : Translation s an d Rotation s 16 5 111.2. Glid e Reflection s 18 1 111.3. Th e Classificatio n Theore m 18 8 111.4. Orientatio n 19 1 111.5. Group s o f Transformations 19 9 111.6. Th e Secon d Structur e Theore m 20 6 111.7. Rotatio n Angle s 21 1 Vlll Contents IV. Similaritie s i n th e Plan e IV. 1. Elementar y Propertie s o f Similarities 21 7 IV.2. Dilation s a s Similaritie s 22 4 IV.3. Th e Structur e o f Similarities 23 1 IV.4. Orientatio n an d Rotatio n Angle s 23 5 IV.5. Fixe d Point s fo r Similaritie s 24 0 V. Conjugac y an d Geometri c Equivalenc e V.l. Congruenc e an d Geometri c Equivalenc e 25 1 V.2. Geometri c Equivalenc e o f Transformations: Conjugac y 25 6 V.3. Geometri c Equivalenc e unde r Similaritie s 26 6 V.4. Euclidea n Geometr y Derive d fro m Transformation s 27 6 VI. Application s t o Plan e Geometr y VI. 1. Symmetr y i n Early Geometr y 28 7 VI.2. Th e Classica l Coincidence s 29 2 VI.3. Dilatio n b y Minu s Two aroun d th e Centroi d 29 8 VI.4. Reflections , Light , an d Distanc e 30 9 VI.5. Fagnano' s Proble m an d th e Orthi c Triangl e 31 5 VI.6. Th e Ferma t Proble m 32 2 VI.7. Th e Circl e o f Apollonius 34 0 VII. Symmetri c Figure s i n th e Plan e VII. 1. Symmetr y Group s 34 7 VII.2. Invarian t Set s an d Orbit s 35 6 VII.3. Bounde d Figure s i n the Plan e 36 3 VIII. Friez e an d Wallpape r Group s VIII. 1. Poin t Group s an d Translatio n Subgroup s 37 6 VIII.2. Friez e Group s 39 9 VIII.3. Two-Dimensiona l Translatio n Lattice s 41 6 VIII.4. Wallpape r Group s 43 9 IX. Area , Volume , an d Scalin g IX. 1. Lengt h o f Curves 45 9 IX.2. Are a o f Polygonal Regions : Basi c Properties 46 7 IX.3. Are a an d Equidecomposabilit y 48 2 IX.4. Are a b y Approximation 48 7 IX.5. Are a an d Similarit y 50 5 IX.6. Scalin g an d Dimensio n 52 0 References 53 1 Index 53 3 Instructor Prefac e This text i s intended fo r a one-semester cours e o n geometry. W e have trie d to write a book that honor s the Greek tradition o f synthetic geometry and at the same time takes Feli x Klein's Erlanger Program m seriously . Th e pri- mary focu s i s on transformations o f the plane , specificall y isometrie s (rigi d motions) an d similarities , bu t ever y effor t i s mad e t o integrat e transfor - mations wit h th e traditiona l geometr y o f lines , triangles , an d circles . O n one hand, w e discuss i n detail the concrete properties o f transformations as geometric objects; on the other hand, w e try to show by example how trans- formations ca n b e use d as tools t o prov e interestin g theorems , sometime s with greate r insigh t tha n traditiona l method s provide . We have bee n surprise d an d please d a t ho w fa r thi s ide a ca n b e taken. W e hope w e hav e mad e concret e th e usuall y abstrac t dictu m o f th e Erlanger Programm: a geometry is determined by its symmetry group. For example , w e have tried t o sho w the intimate relationshi p betwee n Fag- nano 's Problem (inscrib e in a given triangle a triangle o f minimal perimeter ) and th e problem o f computing the product o f three reflections . (Thi s latte r problem is natural since by the First Structure Theorem o f §11. 4 every isome- try i s the product o f at mos t three reflections.) Fro m this, one can prove the concurrency o f the altitudes o f a triangle usin g only reflections, no t similar - ities as does the traditional proof . A s a consequence, on e can later conclud e that th e concurrency o f altitudes hold s equally wel l in elliptic geometry an d (to th e exten t possible ) hyperboli c geometry . I n th e othe r direction , tra - ditional geometri c reasonin g i s used i n showin g that ever y stric t similarit y transformation ha s a fixed point an d the computation o f the product o f two rotations i s interpreted i n terms o f traditional geometry .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    41 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us