Eml 4500 Finite Element Analysis and Design

Eml 4500 Finite Element Analysis and Design

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES 1 INTRODUCTION • We learned Direct Stiffness Method in Chapter 2 – Limited to simple elements such as 1D bars • we will learn Energy Method to build beam finite element – Structure is in equilibrium when the potential energy is minimum • Potential energy: Sum of strain energy and potential of applied loads UV Potential of • Interpolation scheme: applied loads Strain energy vx()4HXGWNq () x {} Beam Interpolation Nodal deflection function DOF 2 BEAM THEORY • Euler-Bernoulli Beam Theory – can carry the transverse load – slope can change along the span (x-axis) – Cross-section is symmetric w.r.t. xy-plane – The y-axis passes through the centroid – Loads are applied in xy-plane (plane of loading) y y Neutral axis Plane of loading x z A L F F 3 BEAM THEORY cont. • Euler-Bernoulli Beam Theory cont. – Plane sections normal to the beam axis remain plane and normal to the axis after deformation (no shear stress) – Transverse deflection (deflection curve) is function of x only: v(x) – Displacement in x-dir is function of x and y: u(x, y) dv udvdu 2 dv uxy(, ) u () x y 0 y 0 dx xx xdxdx2 dx y y(dv/dx) Neutral axis x y = dv/dx L F v(x) 4 BEAM THEORY cont. udvdu 2 • Euler-Bernoulli Beam Theory cont. 0 y xx 2 – Strain along the beam axis: 00 du/ dx xdxdx – Strain xx varies linearly w.r.t. y; Strain yy = 0 – Curvature: dv22/ dx – Can assume plane stress in z-dir basically uniaxial status dv2 EEEy xx xx 0 dx2 • Axial force resultant and bending moment dv2 P dA E dA E ydA PEA OOOxx 0 dx2 0 AAA dv2 dv2 MEI M y dA E ydA E y2 dA dx2 OOOxx 0 dx2 AAA EA: axial rigidity Moment of inertia I(x) EI: flexural rigidity 5 BEAM THEORY cont. • Beam constitutive relation – We assume P = 0 (We will consider non-zero P in the frame element) – Moment-curvature relation: dv2 MEI Moment and curvature is linearly dependent dx2 • Sign convention +Vy +M y +M +P x +P +Vy – Positive directions for applied loads y p(x) x C C C 1 2 3 F F F 1 2 3 6 GOVERNING EQUATIONS • Beam equilibrium equations CSdV y dVy B fpxdxVdxVyyy;0() DT 0 px() EUdx dx CSdM dx dM MDT M dx pdx Vy dx 0 V EUdx 2 y dx dv4 – Combining three equations together: EI p() x dx4 – Fourth-order differential equation p dV Vdxy y dx dM V Mdx M y dx dx 7 STRESS AND STRAIN • Bending stress dv2 dv2 Ey MEI xx dx2 dx2 Mxy() (,xy ) xx I Bending stress – This is only non-zero stress component for Euler-Bernoulli beam • Transverse shear strain uv vv dv 0 uxy(, ) u () x y xy yx xx 0 dx – Euler beam predicts zero shear strain (approximation) VQ – Traditional beam theory says the transverse shear stress is xy Ib – However, this shear stress is in general small compared to the bending stress 8 POTENTIAL ENERGY • Potential energy UV • Strain energy – Strain energy density 2222 1122 1CSdv 1 CS dv UEEyEy0 xx xx() xx DT DT 22 2EUdx22 2 EU dx – Strain energy per unit length 22 11CSdv22 CS dv U() x U (,,) x y z dA Ey22 dA E y dA L OO0 22DTdx22 DT dx O AAEU EU A 2 1 CSdv2 Moment of Ux() EI L DT2 inertia 2 EUdx – Strain energy 2 2 LL1 CSdv UUxdxEIdx() OOL DT2 002 EUdx 9 POTENTIAL ENERGY cont. • Potential energy of applied loads N N L F C dv() x VpxvxdxFvxC ()() BB ( ) i O0 ii i ii11dx • Potential energy 2 2 N N 1 LLCSdv F C dv() x U V EI dx p()() x v x dx BB Fv ( x ) C i OO00DT2 ii i 2 EUdxii11 dx – Potential energy is a function of v(x) and slope – The beam is in equilibrium when has its minimum value 0 v * v v 10 RAYLEIGH-RITZ METHOD 1. Assume a deflection shape vx( ) cf11 ( x ) cf 2 2 ( x )..... cfnn ( x ) – Unknown coefficients ci and known function fi(x) – Deflection curve v(x) must satisfy displacement boundary conditions 2. Obtain potential energy as function of coefficients (cc12 , ,... cn ) U V 3. Apply the principle of minimum potential energy to determine the coefficients 11 EXAMPLE – SIMPLY SUPPORTED BEAM p • Assumed deflection curve 0 x vx( ) C sin L E,I,L • Strain energy 2242 1 L CSdv CEI UEIdx O DT23 240 EUdx L • Potential energy of applied loads (no reaction forces) LL x 2 pL VpxvxdxpCdxC ()() sin 0 OO0 L 00 EI 4 2 pL • Potential energy UV C2 0 C 4L3 dEI 4 24pL pL4 • PMPE: ;CC000 dC2 L35 EI 12 EXAMPLE – SIMPLY SUPPORTED BEAM cont. • Exact vs. approximate solutions pL44 pL CC00 approx76.5EI exact 76.8 EI • Approximate bending moment and shear force dv22 x4 pL2 x M( x ) EI EIC sin0 sin dx22 L L 3 L dv33 x4 pL x V() x EI EIC cos 0 cos y dx33 L L 2 L 3 1 CSpL pL34 p • Exact solutions vx() DT00 x x 0 x EI EU24 12 24 pL p Mx() 00 x x2 22 pL Vx() 0 px y 2 0 13 EXAMPLE – SIMPLY SUPPORTED BEAM cont. 1.0 • Deflection 0.8 0.6 0.4 v(x)/v_max v-exact 0.2 v-approx. 0.0 0 0.2 0.4x 0.6 0.8 1 x Error increases 0.00 0 0.2 0.4 0.6 0.8 1 -0.02 • Bending -0.04 moment -0.06 -0.08 -0.10 M_exact Bending Moment M(x)Bending -0.12 M_approx -0.14 0.6 V_exact 0.4 V_approx • Shear force 0.2 0.0 -0.2 Shear Force V(x) -0.4 -0.6 0 0.2 0.4x 0.6 0.8 1 14 EXAMPLE – CANTILEVERED BEAM –p0 • Assumed deflection C 23 vx() a bxcx 12 cx E,I,L F • Need to satisfy BC vdvdx(0) 0, (0) / 0 23 vx() cx12 cx EI L • Strain energy Uccxdx 26 2 2 O 12 0 • Potential of loads L dv Vcc,()()() p vxdxFvL C L 12O 0 dx 0 CSCS34 pL00232 pL cFLCLcFLCL12DTDT23 EUEU34 15 EXAMPLE – CANTILEVERED BEAM cont. U U L • Derivatives of : 226EI c c x dx EI 4 Lc 6 L2 c c O 12 1 2 1 0 U L 626EI c c x xdx EI 6 L23 c 12 L c c O 12 1 2 2 0 pL3 • PMPE: 0 220 c EI46 Lc12 L c FL 2 CL 1 3 pL4 0 EI612 L23 c L c0 FL 32 3 CL c 12 2 4 cc23.75 10 33 , 8.417 10 • Solve for c1 and c2: 12 • Deflection curve: vx( ) 10 32 23.75 x 8.417 x 3 1 vx( ) 5400 x234 800 x 300 x • Exact solution: 24EI 16 EXAMPLE – CANTILEVERED BEAM cont. 0.0 • Deflection 0.0 0.0 v(x)/v_max 0.0 v-exact v-approx. 0.0 0 0.2 0.4x 0.6 0.8 1 500.00 Error increases 400.00 M_exact M_approx • Bending 300.00 moment 200.00 100.00 Bending Moment M(x)Bending 0.00 -100.00 0 0.2 0.4x 0.6 0.8 1 600.0 • Shear force 500.0 400.0 Shear Force V(x) 300.0 V_exact V_approx 200.0 0 0.2 0.4x 0.6 0.8 1 17 FINITE ELEMENT INTERPOLATION • Rayleigh-Ritz method approximate solution in the entire beam – Difficult to find approx solution that satisfies displacement BC • Finite element approximates solution in an element – Make it easy to satisfy displacement BC using interpolation technique • Beam element – Divide the beam using a set of elements – Elements are connected to other elements at nodes – Concentrated forces and couples can only be applied at nodes – Consider two-node bean element – Positive directions for forces and couples F F – Constant or linearly 1 2 C distributed load 1 C x 2 p(x) 18 FINITE ELEMENT INTERPOLATION cont. • Nodal DOF of beam element – Each node has deflection v and slope – Positive directions of DOFs T – Vector of nodal DOFs {}q {vv112 2 } • Scaling parameter s – Length L of the beam is scaled to 1 using scaling parameter s v1 v2 xx 1 1 1 sdsdx,, x 2 LL ds 1 dx Lds, L dx L x1 x2 s = 0 s = 1 • Will write deflection curve v(s) in terms of s 19 FINITE ELEMENT INTERPOLATION cont. • Deflection interpolation – Interpolate the deflection v(s) in terms of four nodal DOFs 23 – Use cubic function: vs() a01 as as 2 as 3 – Relation to the slope: dv dv ds 1 (2aasas 3)2 dx ds dx L 12 3 – Apply four conditions: dv(0) dv (1) vv(0) vv (1) 1122dx dx – Express four coefficients in terms of nodal DOFs vv10(0) a av dv 1 01 (0) a 11 aL dx L 11 avLvL 32 3 vv20123 (1) aaaa 21122 dv 1 avLvL 22 (1) (aaa 2 3 ) 3112 2 2123dx L 20 FINITE ELEMENT INTERPOLATION cont. • Deflection interpolation cont. 2 3 23 2 3 23 vs() (13 s 2 s ) v1122 Ls ( 2 s s ) (3 s 2 s ) v L ( s s ) IYv1 LL LL vs()[()()()()] Ns Ns Ns NsJZ1 vs() GWN {}q 1234v HX LL2 LL K[ 2 • Shape functions 1.0 23 N 0.8 1 N3 Ns1() 1 3 s 2 s 23 Ns2 () Ls ( 2 s s ) 0.6 23 Ns3 () 3 s 2 s 0.4 23 Ns() L ( s s ) 0.2 4 N2/L 0.0 – Hermite polynomials 0.0 0.2 0.4 0.6 0.8 1.0 N4/L – Interpolation property -0.2 21 FINITE ELEMENT INTERPOLATION cont.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us