Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids

Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids

Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 8-11-2015 Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids Jonathan Wooten Georgia State University, [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Wooten, Jonathan, "Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids." Thesis, Georgia State University, 2015. https://scholarworks.gsu.edu/chemistry_theses/74 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. GLYCOSYLATION OF AMINO ACIDS AND EFFICIENT SYNTHESIS OF GLYCOSPHINGOLIPIDS by JONATHAN VALENTINE WOOTEN Under the Direction of Peng George Wang, PhD ABSTRACT Glycoscience is an emerging field of science that focuses on the study of the structure, biosynthesis, biology, and evolution of saccharides (sugars). It covers a broad range of subjects including microwave-assisted synthesis as well as sphingolipid synthesis. In this field, knowledge is limited due to the complexity of carbohydrates and their derivatives. Therefore, it is all the more important that synthesis of these complex molecules occurs in order to fully understand their biological significance. The following report summarizes two aspects of glycoscience and discusses their biological applications. INDEX WORDS: Microwave-assisted synthesis, Peracetylation, Diazotransfer reagent, Glycoconjugate GLYCOSYLATION OF AMINO ACIDS AND EFFICIENT SYNTHESIS OF GLYCOSPHINGOLIPIDS by JONATHAN VALENTINE WOOTEN A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science Degree in the College of Arts and Sciences Georgia State University 2015 Copyright by Jonathan Valentine Wooten 2015 GLYCOSYLATION OF AMINO ACIDS AND EFFICIENT SYNTHESIS OF GLYCOSPHINGOLIPIDS by JONATHAN VALENTINE WOOTEN Committee Chair: Peng George Wang Committee: Maged Henary Gangli Wang Peng George Wang Electronic Version Approved: Office of Graduate Studies College of Arts and Sciences Georgia State University August 2015 iv DEDICATION I dedicate this thesis to my family and my friends. v ACKNOWLEDGEMENTS I would like to extend thanks and gratitude to my committee chairman and major advisor, Dr. Peng G. Wang. Without his guidance, this work would not have been possible. Thanks are also due to my supervisory mentor Dr. Yunpeng Liu and committee members, Dr. Maged Heanry and Dr. Gangli Wang, for all of their help and guidance in completion of this research. The support of my friends: Kristina Gardner, Zaikuan Yu, and Shukkoor Kondengaden was invaluable in the completion of this project. In conclusion, I would like to thank my parents, Joe and Karen Wooten, for always giving me support and love throughout my lifelong endeavors. 1 TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................. v LIST OF TABLES ............................................................................................................ 4 LIST OF FIGURES .......................................................................................................... 5 1 Comparison of Conventional and Microwave-assisted Synthesis of Glycosylated Amino Acids .................................................................................................................................. 7 1.1 Introduction ......................................................................................................... 7 1.1.1 9 common sugars .......................................................................................... 10 1.2 Purpose of the Study ......................................................................................... 10 1.3 Expected Results ................................................................................................ 13 1.3.1 Scheme of O-Mannose attached Fmoc-serine (microwave) ....................... 13 1.3.3 Scheme O-Mannose attached Fmoc-Threonine (microwave) .................... 13 1.3.4 Scheme of O-Mannose attached Fmoc-serine (conventional) .................... 14 1.3.5 Scheme of O-Mannose attached Fmoc-Threonine (conventional)............. 14 1.4 EXPERIMENT .................................................................................................. 15 1.4.1 Microwave-assisted synthesis of Glycosylated Serine and Theronine. ....... 15 1.4.2 Mechanism of Fmoc-serine synthesis .......................................................... 15 1.4.3 Conventional synthesis of Glycosylated Serine and Threonine .................. 16 1.5 RESULTS ........................................................................................................... 17 1.5.1 Proton NMR Glycosylated Serine-microwave ............................................. 17 2 1.5.2 Carbon NMR Glycosylated Serine-microwave ............................................ 18 1.5.3 Mass Spectrometry (ESI) Glycosylated Serine-microwave ......................... 18 1.5.4 Proton NMR Glycosylated Serine-conventional .......................................... 19 1.5.5 Carbon NMR Glycosylated Serine-conventional ......................................... 19 1.5.6 Table. Microwave Reaction conditions ....................................................... 20 1.6 DISCUSSION .................................................................................................... 21 1.7 CONCLUSION .................................................................................................. 22 2 Efficient synthesis of glycosphingolipids using N-phenyltrifluoroacetimidates as a leaving group ............................................................................................................................ 23 2.1 INTRODUCTION ............................................................................................. 23 2.1.1 Figure 12: Biosynthesis of a sphingolipid ................................................... 24 2.2 Purpose of Study ............................................................................................... 26 2.3 Expected Results ................................................................................................ 29 2.4 Experiment ......................................................................................................... 29 2.4.1 Synthesis of azidosphingosine ...................................................................... 29 2.4.2 Figure 17: Synthesis of azidosphingosine.................................................... 30 2.4.3 Synthesis of Diazotransfer reagent 1—Trifluoromethanesulfonyl azide (TfN3) 30 2.4.4 Synthesis of Diazotrasnfer reagent 2—Imidazole-1-sulfonyl Azide ........... 31 2.4.5 Synthesis of a Glycosphingolipid .................................................................. 31 3 2.4.6 Figure 18: Final synthesis of azidosphingosine (1), preparation of the glycosyl donor (2). Glycosylation of azidosphingosine (3) .................................................. 32 2.5 Results ................................................................................................................ 32 2.6 DISCUSSION .................................................................................................... 33 2.6.1 Figure 19: Comparison of TfN3 and Imidazole-1-sulfonyl Azide ............... 34 2.6.2 Figure 20: Synthetic Scheme of Imidazole-1-sulfonyl Azide ...................... 35 2.7 CONCLUSION .................................................................................................. 36 REFERENCES ................................................................................................................ 37 APPENDICES ................................................................................................................ 43 Appendix A .................................................................................................................. 43 Appendix B .................................................................................................................. 45 4 LIST OF TABLES Table 1 Microwave Reaction Conditions ......................................................................... 20 5 LIST OF FIGURES Figure 1 Nine Common Sugars......................................................................................... 10 Figure 2 Fmoc-Serine (Microwave).................................................................................. 13 Figure 3 Fmoc-Threonine (Microwave) ........................................................................... 13 Figure 4 Fmoc-serine (conventional) ............................................................................... 14 Figure 5 Fmoc-Threonine (conventional) ......................................................................... 14 Figure 6 Mechanism of Fmoc-serine Synthesis ................................................................ 15 Figure 7 Proton NMR Glycosylated Serine-microwave ................................................... 17 Figure 8 Carbon NMR Glycosylated Serine-microwave .................................................. 18 Figure 9 Mass Spectrometry (ESI) Glycosylated Serine-microwave ............................... 18 Figure 10 Proton NMR Gyycosylated Serine-conventional ............................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    68 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us