Photon Mapping

Photon Mapping

Photon Mapping CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Photon mapping A two-pass method Pass 1: Build the photon map (photon tracing) Pass 2: Render the image using the photon map CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Building the Photon Map Photon Tracing CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Rendering using the Photon Map Rendering CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Photon Tracing Photon emission • Projection maps • Photon scattering • Russian Roulette • The photon map data structure • Balancing the photon map • CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen What is a photon? Flux (power) - not radiance! • Collection of physical photons • ⋆ A fraction of the light source power ⋆ Several wavelengths combined into one entity CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Photon emission Given Φ Watt lightbulb. Emit N photons. Each photon has the power Φ Watt. N Photon power depends on the number of emitted • photons. Not on the number of photons in the photon map. CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Diffuse point light Generate random direction Emit photon in that direction // Find random direction do { x = 2.0*random()-1.0; y = 2.0*random()-1.0; z = 2.0*random()-1.0; while ( (x*x + y*y + z*z) > 1.0 ); } CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Example: Diffuse square light - Generate random position p on square - Generate diffuse direction d - Emit photon from p in direction d // Generate diffuse direction u = random(); v = 2* π*random(); d = vector( cos (v)√u, sin (v)√u, √1 u ); − CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Projection maps CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Projection maps CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Surface interactions The photon is Stored (at diffuse surfaces) and • Absorbed ( A) or • Reflected ( R) or • Transmitted ( T ) • A + R + T = 1 .0 CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Storing the photon struct photon { float x,y,z; // position char p[4]; // power packed as 4 bytes char phi,theta; // incident direction short flag; // flag used for kd-tree } Memory overhead: 20 bytes/photon. CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Photon scattering The simple way: Given incoming photon with power Φp Reflect photon with the power R Φp ∗ Transmit photon with the power T Φp ∗ Photon scattering The simple way: Given incoming photon with power Φp Reflect photon with the power R Φp ∗ Transmit photon with the power T Φp ∗ Risk: Too many low-powered photons - wasteful! • When do we stop (systematic bias)? • Photons with similar power is a good thing. • CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Russian Roulette Statistical technique • Known from Monte Carlo particle physics • Introduced to graphics by Arvo and Kirk in 1990 • CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Russian Roulette Probability of termination: p Russian Roulette Probability of termination: p E X { } Russian Roulette Probability of termination: p E X = p 0 { } · Russian Roulette Probability of termination: p E X = p 0 + (1 p) { } · − Russian Roulette Probability of termination: p E X E X = p 0 + (1 p) { } { } · − · 1 p − Russian Roulette Probability of termination: p E X E X = p 0 + (1 p) { } = E X { } · − · 1 p { } − Russian Roulette Probability of termination: p E X E X = p 0 + (1 p) { } = E X { } · − · 1 p { } − Terminate un-important photons and still get the correct result. CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Russian Roulette Example Surface reflectance: R = 0.5 Incoming photon: Φp = 2 W r = random(); if ( r < 0.5 ) reflect photon with power 2 W else photon is absorbed CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Russian Roulette Intuition Surface reflectance: R = 0.5 200 incoming photons with power: Φp = 2 Watt Reflect 100 photons with power 2 Watt instead of 200 photons with power 1 Watt. CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Russian Roulette Example 2 Surface reflectance: R = 0.2 Surface transmittance: T = 0.3 Incoming photon: Φp = 2 W r = random(); if ( r < 0.2 ) reflect photon with power 2 W else if ( r < 0.5 ) transmit photon with power 2 W else photon is absorbed CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Russian Roulette Very important! • Use to eliminate un-important photons • Gives photons with similar power :) • CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Sampling a BRDF fr(x, ~ω i, ~ω o) = w1fr, 1(x, ~ω i, ~ω o) + w2fr, 2(x, ~ω i, ~ω o) CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Sampling a BRDF fr(x, ~ω i, ~ω o) = w fr,d + w fr,s 1 · 2 · r = random() (w + w ); · 1 2 if ( r < w 1 ) reflect diffuse photon else reflect specular CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Specular Reflection ~ ~ ~ dr = di 2~n (~n di) − · CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen The photon map datastructure Requirements: Compact (we want many photons) • Fast insertion of photons • Fast nearest neighbor search • The photon map datastructure Requirements: Compact (we want many photons) • Fast insertion of photons • Fast nearest neighbor search • A left-balanced kd-tree CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen The kd-tree Introduced by Bentley in 1975 • A multidimensional ``binary'' tree • CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen A left-balanced kd-tree Post-process: No pointers (save 40% memory) • Faster search • Recursively split photons along the median of the ``largest'' dimension. CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Photon tracing Overview: While (we want more photons) { Emit a photon while (photon hits a surface) { Store photon Use Russian Roulette to scatter photon } } Build balanced kd-tree CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Rendering We want a Radiance value, L, per pixel. The photon map stores flux/power. Rendering We want a Radiance value, L, per pixel. The photon map stores flux/power. Radiance is the differential flux per differential solid angle per differential cross-sectional area: dΦ2(x, ~ω ) L(x, ~ω ) = dω cos θ dA Rendering We want a Radiance value, L, per pixel. The photon map stores flux/power. Radiance is the differential flux per differential solid angle per differential cross-sectional area: dΦ2(x, ~ω ) L(x, ~ω ) = dω cos θ dA How do we get a radiance estimate from the photon map? CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Radiance estimate L(x, ~ω ) = fr(x, ~ω ′, ~ω )L′(x, ~ω ′) cos θ′ dω ′ ZΩ Radiance estimate L(x, ~ω ) = fr(x, ~ω ′, ~ω )L′(x, ~ω ′) cos θ′ dω ′ ZΩ 2 dΦ′ (x, ~ω ′) = fr(x, ~ω ′, ~ω ) cos θ′dω ′ ZΩ dω ′ cos θ′ dA Radiance estimate L(x, ~ω ) = fr(x, ~ω ′, ~ω )L′(x, ~ω ′) cos θ′ dω ′ ZΩ 2 dΦ′ (x, ~ω ′) = fr(x, ~ω ′, ~ω ) cos θ′dω ′ ZΩ dω ′ cos θ′ dA 2 dΦ′ (x, ~ω ′) = fr(x, ~ω ′, ~ω ) ZΩ dA Radiance estimate L(x, ~ω ) = fr(x, ~ω ′, ~ω )L′(x, ~ω ′) cos θ′ dω ′ ZΩ 2 dΦ′ (x, ~ω ′) = fr(x, ~ω ′, ~ω ) cos θ′dω ′ ZΩ dω ′ cos θ′ dA 2 dΦ′ (x, ~ω ′) = fr(x, ~ω ′, ~ω ) ZΩ dA n ∆Φ p(x, ~ω p′ ) fr(x, ~ω ′ , ~ω ) ≈ p ∆A Xp=1 CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Radiance estimate L CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen The radiance estimate Locate the n nearest photons using kd-tree n ∆Φ p(x, ~ω p′ ) L(x, ~ω ) fr(x, ~ω ′ , ~ω ) ≈ p πr 2 Xp=1 The radiance estimate Locate the n nearest photons using kd-tree n ∆Φ p(x, ~ω p′ ) L(x, ~ω ) fr(x, ~ω ′ , ~ω ) ≈ p πr 2 Xp=1 Where the surface is locally flat this is a consistent estimator: Converges to the correct result :) CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Disc filtering Disc filtering CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Filtering Weight nearby photons higher. Filtering Weight nearby photons higher. Cone filtering: dp wpc = 1 , − k r N ∆Φ p(x, ~ω p) wpc Lr(x, ~ω ) fr(x, ~ω p, ~ω ) ≈ πr 2 (1 2 ) Xp=1 − 3k Also Gaussian filtering CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Caustic from a glass sphere 30000 photons / 50 photons in radiance estimate CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Metalring caustic CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Caustic on a glossy surface 340000 photons / 100 photons in radiance estimate ≈ CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Are we done? Are we done? Works great for caustics :) Are we done? Works great for caustics :) But what about other global illumination effects such as color bleeding? CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Direct visualization ofthe radiance estimate 200000 photons / 50 photons in radiance estimate CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Direct visualization ofthe radiance estimate 200000 photons / 500 photons in radiance estimate CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen A practical two-pass method Observations: Caustics are difficult to sample (from the eye) • Indirect illumination requires many photons • CSE272: Advanced Image Synthesis (Spring 2010) Henrik Wann Jensen Two photon maps global photon map caustics photon map CSE272:

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    75 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us