Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking

Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking

Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking By Andrej Sipaj A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Applied Science In Nuclear Engineering Faculty of Energy Systems and Nuclear Science Program University of Ontario Institute of Technology December, 2012 ©Andrej Sipaj, 2012 Abstract The biological effects of charged particles is of interest in particle therapy, radiation protection and space radiation science and known to be dependent on both absorbed dose and radiation quality or LET. Microdosimetry is a technique which uses a tissue equivalent gas to simulate microscopic tissue sites of the order of cellular dimensions and the principles of gas ionization devices to measure deposited energy. The Gas Electron Multiplier (GEM) has been used since 1997 for tracking particles and for the determination of particle energy. In general, the GEM detector works in either tracking or energy deposition mode. The instrument proposed here is a combination of both, for the purpose of determining the energy deposition in simulated microscopic sites over the charged particle range and in particular at the end of the range where local energy deposition increases in the so‐called Bragg‐peak region. The detector is designed to track particles of various energies for 5 cm in one dimension, while providing the particle energy deposition every 0.5 cm of its track. The reconfiguration of the detector for different particle energies is very simple and achieved by adjusting the pressure of the gas inside the detector and resistor chain. In this manner, the detector can be used to study various ion beams and their dose distributions to tissues. Initial work is being carried out using an isotopic source of alpha particles and this thesis will describe the construction of the GEM‐based detector, computer modelling of the expected gas‐gain and performance of the device as well as comparisons with experimentally measured data of segmented energy deposition. 2 Table of Contents Abstract…………………………………………………………………………… ……………………………………………2 Acknowledgment……………………………………………………………………………………………………………5 List of Figures…………………………………………………………………………………………………………………6 List of Tables…………………………………………………………………………………………………………………..9 Nomenclature………………………………………………………………………………………………………………10 Acronyms..........................................................................................................................11 1 Chapter ...................................................................................................................... 12 1.1 Introduction ........................................................................................................ 12 1.2 Gas Electron Multiplier ....................................................................................... 14 1.3 Thesis Objective ................................................................................................. 17 1.4 Past Trials of GEM Detectors for Tracking and Energy Measurements ............. 18 1.5 Outline of Thesis ................................................................................................. 20 2 Chapter: Background and Theory ............................................................................. 22 2.1 Background and Theory of Charged Particle Energy Loss in Gases ................... 22 2.1.1 Ionization by Alpha Particles ....................................................................... 22 2.1.2 Stopping Power ........................................................................................... 23 2.1.3 Electron Multiplication in Gases ................................................................. 24 2.1.4 Penning Transfer ......................................................................................... 26 2.1.5 Drift Velocity of Electrons ........................................................................... 27 2.1.6 Diffusion of Electrons .................................................................................. 28 2.1.7 Electron Attachment ................................................................................... 28 2.2 Background to Computer Simulation Software ................................................. 29 2.2.1 Garfield++ .................................................................................................... 29 2.2.2 Gmsh and Elmer .......................................................................................... 31 2.2.3 Maxwell ....................................................................................................... 32 3 Chapter: Physical Design and Settings of the Detector ............................................ 33 3.1 Sensitive Volume ................................................................................................ 34 3.2 Entrance Window with a Collimator .................................................................. 36 3.3 Main board with Pre‐amplifier ........................................................................... 37 3.4 Voltage and Current Divider ............................................................................... 38 3 3.5 Collection Plate Switch ....................................................................................... 40 3.6 Selection of Gas and Pressure ............................................................................ 41 4 Chapter: Computer Simulation ................................................................................. 45 4.1 General Principles and Settings of Simulation ................................................... 45 4.1.1 Geometry and Boundary Conditions .......................................................... 45 4.1.2 Gas Settings ................................................................................................. 46 4.1.3 Initial Particle Setting .................................................................................. 46 4.2 Drift Field Simulation .......................................................................................... 46 4.3 GEM Field Simulation ......................................................................................... 51 4.4 Induction Field Simulation ................................................................................. 52 4.5 Summary of Computer Simulation ..................................................................... 61 5 Results of Detector Prototype Tests ......................................................................... 63 5.1 Prototype Overview ........................................................................................... 63 5.2 Energy Tracking of an Alpha Particle .................................................................. 66 Stability of the Detector Pulse Height .......................................................................... 68 6 Chapter: Conclusion and Future Developments ....................................................... 70 6.1 Future Developments and Recommendations .................................................. 73 7 Appendix A: Example of Garfield++ Code ................................................................. 76 8 Appendix B: Input File with Ion Mobilities................................................................ 82 9 Appendix C: MCNPX Code For Obtaining Stopping Power Curve ............................. 83 10 Appendix D: Garfield ++ Installation ......................................................................... 85 11 Appendix E: Schemas of Custom Made Parts ........................................................... 87 12 References ................................................................................................................ 90 4 Acknowledgment First, I would like to thank Dr. Anthony Waker for his constant support and encouragement in my research and the writing of this thesis. I sincerely appreciate his guidance and support during the period of this work and most of all, his patience and understanding. I would like to thank to Dr. Heinrich Schindler for his help, patience and time with the Garfield++ simulation problems that I faced and to Fawaz Ali for his MCNPX model contribution. I would also like to thank all my professors, colleagues and friends who gave me generous support throughout my time at UOIT. I am grateful to the University Network of Excellence in Nuclear Engineering (UNENE) and the Natural Science and Engineering Council of Canada (NSERC) for their financial contributions to this project. Lastly, I am thankful to my family, especially my parents, Frantisek and Helena Sipaj, and my sister, Katarina Sipaj for helping me through the difficult times and for being a source of inspiration during the course of my research and throughout my university education. 5 List of Figures Figure 1.1: Drawing of typical GEM foil with dimension is micrometers ........................ 15 Figure 1.2: Simulated field settings of a GEM ................................................................... 17 Figure 1.3: Resulting image of a single alpha particle by GEM scintillation using gas Ar/CF4 (95/5) ..................................................................................................................... 19 Figure 1.4: Energy resolution of single GEM with single PCB readout board, FWHM ~18% at 5.9 keV .......................................................................................................................... 20 Figure 2.1: Example of Bragg curve .................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    92 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us