I MECHANICAL STABILITY EVALUATION of I-MOTIF and G

I MECHANICAL STABILITY EVALUATION of I-MOTIF and G

MECHANICAL STABILITY EVALUATION OF I-MOTIF AND G-QUADRUPLEX STRUCTURES UNDER DIVERSE CIRCUMSTANCES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Soma Dhakal May 2013 i Dissertation written by Soma Dhakal B.S., Tribhuvan University, Nepal, 2001 M.S., Tribhuvan University, Nepal, 2003 Ph. D., Kent State University, USA, 2013 Approved by ___________________________________, Chair, Doctoral Dissertation Committee Hanbin Mao, Ph. D ___________________________________, Member, Doctoral Dissertation Committee Mietek Jaroniec, Ph. D ___________________________________, Member, Doctoral Dissertation Committee Soumitra Basu, Ph. D ___________________________________, Member, Doctoral Dissertation Committee Chanjoong Kim, Ph. D Accepted by ___________________________________, Chair, Dept. of Chemistry & Biochemistry Michael Tubergen, Ph. D __________________________________, Associate Dean, College of Arts and Sciences Raymond A. Craig, Ph. D ii TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... vi LIST OF TABLES……………………………………………………………………...…x ACKNOWLEDGEMENTS………………………………………………………………xi Chapter 1 Introduction and background...…………………..………. ………..……….1 1.1 G-quadruplex ........................................................................................... 1 1.2 i-Motif ..................................................................................................... 3 1.3 G-quadruplex and i-motif in human ILPR .............................................. 5 1.4 G-quadruplex and i-motif in duplex DNA .............................................. 6 1.5 Biological roles of G-quadruplex and i-motif ......................................... 7 1.6 Material applications of G-quadruplex and i-motif ................................ 9 1.7 Laser Tweezers for single-molecule manipulation ............................... 11 2 Materials and methods.……………..…..…...…………………….…….….14 2.1 Materials and Methods .......................................................................... 14 2.1.1 DNA Samples .................................................................... …….14 2.1.2 DNA construct for ILPR i-motif and telomeric G-quadruplex in ssDNA ........................................................................................ .15 2.1.3 DNA construct for i-motif and G-quadruplex in ILPR duplex .. .18 2.1.4 Single-Molecule Experiment ..................................................... .19 iii 2.1.5 Calculation of change in contour length .................................... .21 2.1.6 Deconvolution of Populations.................................................... .21 2.1.7 Control Experiments for Single-Molecule Study…….………..22 2.1.8 Calculation of Percentage Formation............................. ……….22 2.1.9 Calculation of ∆Gunfold ............................................................... .22 2.1.10 CD Spectroscopy ..................................................................... .23 2.1.11 UV Spectroscopy …………… .…….……… . ….…….…..24 2.1.12 Preparation of 5' end radiolabeled DNA .................................. .24 2.1.13 Electrophoretic Mobility Shift Assay (EMSA)........................ .24 2.1.14 Bromine Footprinting of ssDNA ………………….….….…...25 2.1.15 DMS and Bromine footprinting of dsDNA ................. ………..26 3 Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single molecular level…...….......................................................................................……….29 3.1 Introduction .......................................................................................... 29 3.2 Results and Discussion ........................................................................ 33 3.3 Conclusions .......................................................................................... 48 4 Intramolecular folding in human ILPR fragment with three C-rich repeats………………………….……….......……………………….….….49 4.1 Introduction ........................................................................................... 49 4.2 Results ................................................................................................... 52 4.3 Discussion ............................................................................................. 69 4.4 Conclusions……………………………………………………………71 iv 5 G-quadruplex and i-motif are mutually exclusive in double-stranded ILPR DNA…………....……….......…………………………………….…….….73 5.1 Introduction ........................................................................................... 73 5.2 Results ................................................................................................... 74 5.3 Discussion ............................................................................................. 90 5.4 Conclusion…..……………………………….………………………..92 6 CONCLUDING REMARKS……...…..……...........….....………………….94 PERMISSION TO REUSE COPYRIGHTED MATERIAL…………...………….…….97 REFERENCES……………….……………………..……................................……….100 v LIST OF FIGURES Figure 1.1 Formation of G-quadruplex and its general types based on the strand orientation ……………………………………...………………………..…. 2 Figure 1.2 Formation of an i-motif structure by intercalation of C:CH + pairs.…….....….4 Figure 2.1 Schematic of the laser tweezers instrument…. …...…………………………. 15 Figure 2.2 Flow chart of making DNA constructs for single-molecule experiment…….17 Figure 2.3 Schematic representation of sample preparation and mechanical unfolding of DNA structures in single-molecule experiment …. …………………………. 20 Figure 2.4 A typical force-extension ( F-X) curve for the unfolding of i-motif structure at pH 5.5………………………………………………………………………...21 Figure 3.1 Schematic of i-motif structure and a typical force extension (F-X) curve……………………………………..….…...………………………….34 Figure 3.2 CD experiments and Br 2 footprinting of the ILPR C-rich sequence, 5'- (TGTCCCCACACCCC) 2TGT ……………………………………………..35 Figure 3.3 UV (295 nm) melting for the i-motif forming sequence 5'-(TGTCCCCACA CCCC) 2TGT…….………………………….……………………..………...36 Figure 3.4 All of the stable structures in the sequence 5'-(TGTCCCCACACCCC) 2TGT at 25 °C ………………………………..….…...…………………………...37 Figure 3.5 Calculation of number of nucleotides contained in a secondary structure in the sequence 5'-(TGTCCCCACACCCC) 2TGT ..…...………………………….39 vi Figure 3.6 A representative pulling curve with two ~5 nm change in contour length ( ∆L) unfolding events in the sequence 5'-(TGTCCCCACACCCC) 2TGT ……………………………………………. .…...…………………………...40 Figure 3.7 Histogram of change in contour length ( ∆L) of the DNA secondary structure formed in 5′-TGTC 4ACAC 4TGTC 4ACA .….…...………………………….41 Figure 3.8 ∆L histograms at different pH (23 oC) .…..….…...………………………….43 Figure 3.9 The percentage formation of the i-motif and the partially folded structure at different pH under 23 ºC..………………………….……………………….44 Figure 3.10 Rupture force histograms of partially folded structure and i-motif structures different pH under 23 oC.………………..….…...………………………….46 Figure 4.1 CD experiments of ILPR-I3 at different pH and temperature in a 10 mM sodium phosphate buffer with 100 mM KCl and 5 µM DNA concentration……………………………………………………………….54 Figure 4.2 Electrophoretic mobility shift assays (EMSA) and thermal melting/reannealing of the ILPR-I3…...………………………………….55 Figure 4.3 CD spectra of sequences described in Table 4.1………………..………….56 Figure 4.4 A typical force-extension ( F-X) curve obtained from the mechanical unfolding of the secondary structure in the ILPR-I3 at pH 5.5………….…………….58 Figure 4.5 Single-molecule study of the ILPR-I3 at different pH using laser tweezers ………………………………………………………………..…………….59 vii Figure 4.6 Four possible structures that employ C:CH + pair stacking in the ILPR-I3 sequence ……………………………………………….……..…………….60 Figure 4.7 Mutation analysis in a 10 mM sodium phosphate buffer (pH 5.5) with 100 mM KCl …………………………………………………………………….64 Figure 4.8 Formation of an intermolecular i-motif…………………………………….66 Figure 4.9 Intensity scan for ILPR-I3 bands and the fold protection for ILPR-I4 and ILPR-I3 for Br 2 footprinting in a 10 mM sodium phosphate buffer at pH 5.5 with 100 mM KCl………………………………………………………….67 Figure 4.10 Calculation of the unfolding rate constant ( kunfold ) at 0 pN for the intramolecular i-motif and the 45 pN population in the ILPR-I3/ILPR-I1 mixture…………………………………………………………….……….68 Figure 5.1 Chemical footprinting of a double-stranded 87-bp ILPR DNA at different pH and salt conditions at 23 °C. ……………………………..………………….75 Figure 5.2 Single-molecule investigation of G-quadruplex/i-moif in the double-stranded ILPR DNA ………………………………………………………….……….79 Figure 5.3 Calculation of the number of nucleotides ( N) involved in the tetraplex structures. …………………………………………………..…….………….81 Figure 5.4 Histogram of change in contour length (∆L) in a pH 7.4 Tris buffer with 100 mM Li + at 23 °C…………………………………………………..………….84 viii Figure 5.5 Kinetic analyses of G-quadruplex and i-motif in the double-stranded ILPR DNA at pH 5.5.………………………………………………..….………….87 Figure 5.6 Major species under different pH and ionic conditions…………………….90 ix LIST OF TABLES Table 3.1 Summary of change in contour length (∆L) , rupture force ( F), free energy change of unfolding ( ∆G ), and 286 nm CD melting temperature ( Tm) at pH 5.5-7.0…………………………………………………….………………….37 Table 4.1 Sequences of wild type ILPR-I4 and ILPR-I3, a scrambled sequence, and the mutants used in this study

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    129 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us