Th PM OS1 1: Pdes in Biomedical Image Analysis

Th PM OS1 1: Pdes in Biomedical Image Analysis

TABLE OF CONTENTS Th_PM_OS1: PDEs in Biomedical Image Analysis A Template-Propagation Method for Segmentation of Filamentous Structures in Electron Tomograms...............................................................................1 Sriram Subramaniam, Peijun Zhang, David Germain, Tracey Rouault, NIH; Weicheng Shen, SAIC; A New Approach for 3D Segmentation of Cellular Tomograms Obtained Using Three-Dimensional Electron Microscopy ..........................................................5 Alberto Bartesaghi, Guillermo Sapiro, University of Minnesota; Stanton Lee, Jon Lefman, Sharon Wahl, Sriram Subramaniam, National Institutes of Health; Jan Orenstein, George Washington University; DT-MRI Estimation, Regularization and Fiber Tractography..................................9 Rachid Deriche, INRIA; David Tschumperle, INRIA; Christophe Lenglet, INRIA A Hybrid 3D Segmentation Framework.....................................................................13 Dimitris Metaxas, Rutgers University Variational Methods and Partial Differential Equations in Cardiac Image Analysis ..............................................................................................................17 Nikos Paragios, Ecole Nationale des Ponts et Chaussees Image Interpolation Based on Optimal Mass Preserving Mappings .......................21 Lei Zhu, Allen Tannenbaum, Georgia Institute of Technology Th_PM_OS2: Advanced Methods in Ultrasound Imaging Dual-Mode Ultrasound Phased Arrays for Imaging and Therapy ..........................25 Emad Ebbini, University of Minnesota; Hui Yao, University of Minnesota Microbubbles for Ultrasound Diagnosis and Therapy..............................................29 J. Fowlkes, Oliver Kripfgans, Paul Carson, University of Michigan Velocity Vector Estimation in Synthetic Aperture Flow and B-Mode Imaging .....33 Jorgen Jensen, Technical University of Denmark Coded Excitation Methods in Biomedical Ultrasound ..............................................37 Matthew O'Donnell, Yao Wang, University of Michigan Imaging Tissue Mechanical Properties Using Impulsive Acoustic Radiation Force.............................................................................................................41 Mary Scott Soo, Mark Palmeri, Kathryn Nightingale, Amy Congdon, Kristin Frinkley, Gregg Trahey, Duke University Motion Tracking for Palpation Imaging.....................................................................45 Timothy Hall, Jingfeng Jiang, University of Wisconsin 3D Intravascular Ultrasound Palpography for Vulnerable Plaque Detection........49 Ton van der Steen, Erasmus Medical Centre Th_PM_OS3: Imaging of Gene Expression: From Microarrays to In Vivo Studies Automated Interpretation of Subcellular Location Patterns....................................53 Robert Murphy, Carnegie Mellon University M-FISH Image Registration and Classification.........................................................57 Yu-Ping Wang, UMKC Super-Resolution Tracking of Weak Fluorescent Markers in 3D: Application in Dissecting Mechanics of Chromosome Segregation using Fluorescence Imaging and Molecular Genetics in Yeast..................................................................61 Gaudenz Danuser, The Scripps Research Institute Pareto Depth Sampling Distributions for Gene Ranking .........................................65 Alfred Hero, Sepidarseh Zareparsi, Anand Swaroop, University of Michigan; Gilles Fleury, ESE Automated Confocal Microscopy: The Way of Achieving both Quality and Quantity in 3D Image Cytometry................................................................................69 Michal Kozubek, Petr Matula, Pavel Matula, Masaryk University High Resolution Detection of Chromosome Abnormalities with Single Copy Fluorescence In Situ Hybridization.............................................................................73 Peter Rogan, Joan Knoll, Children's Mercy Hospital and Clinics Th_PM_OC4: Image Segmentation Cortical Surface Flattening Using Least Square Conformal Mapping with Minimal Metric Distortion...........................................................................................77 Lili Ju, Josh Stern, Kelly Rehm, Kirt Schaper, David Rottenberg, University of Minnesota; Monica Hurdal, Florida State University Anatomical Guided Segmentation with Non-Stationary Tissue Class Distributions in an Expectation-Maximization Framework.....................................81 Kilian Pohl, W. Eric Grimson, MIT; Sylvain Bouix, Ron Kikinis, Harvard Segmentation of 3D Deformable Objects with Level Set Based Prior Models........85 Jing Yang, Hemant Tagare, Lawrence Staib, James Duncan, Yale University Skeletonzation by Blocks for Large 3D Datasets: Application To Brain Microcirculation............................................................................................................89 Celine Fouard, Gregoire Malandain, INRIA; Steffen Prohaska, Zuse Institute Berlin (ZIB); Malte Westerhoff, INDEED Visual Concept; Francis Cassot, INSERM U455; Christophe Mazel, Didier Asselot, TGS Europe; Jean-Pierre Marc-Vergnes, INSER Segmentation of Connective Tissue in the Optic Nerve Head Using an Anisotropic Markov Random Field ............................................................................93 Vicente Grau, LSU Eye Center; J. Crawford Downs, Claude Burgoyne, LSU Eye Center Level Set Method for Skull-Stripping MR Brain Images .........................................97 Haihong Zhuang, Daniel Valentino, University of California Los Angeles Normalization of Joint Image-Intensity Statistics in MRI using the Kullback-Leibler Divergence.....................................................................................101 Neil Weisenfeld, Simon Warfield, Brigham and Women's Hospital/Harvard Medical School Microarray Gene Expression Data Analysis ............................................................105 Yuhua Ding, Jacqueline Fairley, George Vachtsevanos, Andrew Gardner, Georgia Inst. Technology; Petia Simeonova, National Institute for Occupational Safety and Health Robust Unsupervised Tissue Classification in MR Images.....................................109 Dzung Pham, Jerry Prince, Johns Hopkins University Likelihood Function Analysis for Segmentation of Mammographic Masses for Various Margin Groups .............................................................................................113 Lisa Kinnard, Georgetown University, Howard University; Shih-Chung Lo, Georgetown University; Erini Makariou, Georgetown University; Teresa Osicka, Georgetown University; Paul Wang, Howard University; Matthew Freedman, Georgetown University; Mohamed Chouikha, Howard University Fr_AM_P1: Image Segmentation I Quality Processing of Microarray Image Data through Image Inpainting and Texture Synthesis........................................................................................................117 Paul O'Neill, George Magoulas, Xiaohui Liu, Brunel Univeristy Toward Leukocyte Recognition Using Morphometry, Texture And Color ..........121 Daniela Sabino, Luciano Costa, USP; Marco Zago, Edgar Rizzatti, FMRP-USP 4-D Lesion Detection Using Expectation-Maximization and Hidden Markov Model............................................................................................................................125 Jeffrey Solomon, Sensor Systems, Inc.; Arun Sood, George Mason University Segmentation of in-vitro Endothelial Cell Networks................................................129 Fabrizio Lamberti, Bartolomeo Montrucchio, Politecnico di Torino Vascular Segmentation in Three-Dimensional Rotational Angiography Based on Maximum Intensity Projections................................................................133 Rui Gan, Albert C. S. Chung, Wilbur C. K. Wong, Department of Computer Science, the Hong Kong University of Science and Technology; Simon C.H. Yu, The Prince of Wales Hospital A New Image Segmentation And Smoothing Model ...............................................137 Song Gao, Tien Bui, Department of Computer Science, Concordia University An Adaptive Speed Term Based on Generalized Fuzzy Operator for Level Set Segmentation...............................................................................................141 Yazhong Lin, Wufan Chen, First Military Medical University Tissue Color Images Segemntation Using Artificial Neural Networks..................145 Mohamed Sammouda, Mohamed Benaichouche, Prince Sultan University; Rachid Sammouda, Sharjah University; Noboru Niki, Tokushima University Image Segmentation with the Combination of the PCA- and ICA-Based Modes of Shape Variation..........................................................................................149 Juha Koikkalainen, Helsinki University of Technology; Jyrki Lötjönen, VTT Information Technology Automatic 2D Segmentation of the Left Ventricle in Tagged Cardiac MRI Using Motion Information .........................................................................................153 Julien Milles, Anneke van Susteren, Theo Arts, CARIM - Maastricht University; Patrick Clarysse, Pierre Croisille, Isabelle Magnin, CREATIS - INSA Lyon University Hierarchical Segmentation of Multiple Sclerosis Lesions in Multi-Sequence MRI ..............................................................................................................................157 Guillaume Dugas-Phocion, Miguel Angel Gonzalez Ballester, Grégoire Malandain, Nicholas Ayache, INRIA Sophia; Christine Lebrun, Stéphane Chanalet, Caroline Bensa, CHU Pasteur, Service de

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us