Mantle Plumes and Intraplate Volcanism Volcanism on the Earth

Mantle Plumes and Intraplate Volcanism Volcanism on the Earth

Mantle Plumes and Intraplate Volcanism Origin of Oceanic Island Volcanoes EAS 302 Lecture 20 Volcanism on the Earth • Mid-ocean ridges (>90% of the volcanism) – “constructive” plate margins • Subduction-related (much of the rest) – “destructive plate” margins • Volcanism in plate interiors (usually) – , e.g., Yellowstone, Hawaii not explained by the plate tectonic paradigm. Characteristics of Intra-plate Volcanoes • Not restricted to plate margins. • Occur at locations that are stationary relative to plate motions, “hot spots”(pointed out by J. T. Wilson, 1963). • Distinctive isotopic and trace element composition. Hot Spot Traces on the Pacific Ocean Floor The Mantle Plume Model • “ Hot spot” volcanoes are manifestations of mantle plumes: columns of hot rock rising buoyantly from the deep mantle – This idea proposed by W. J. Morgan in 1971. • Evidence – Maintain (almost) fixed positions relative to each other; i.e., they are not affected by plate motions – A number of “hot spots” are associated with “swells”, indicative of hot mantle below – Their magmas are compositionally distinct from mid-ocean ridge basalts and therefore must be derived from a different part of the mantle Current Mantle Plumes The Hawaiian Mantle Plume Age of Hawaiian Volcanism The Hawaiian “Swell” Plumes at the surface • In the last 100-200 km, the plume begins to melt. • Once it reaches the base of the lithosphere, it can no longer rise and spreads out. Isotopic Compositions of Oceanic Island Basalts • Nd and Sr isotope ratios 12 DMM distinct from MORB: 10 derived from separate MORB 8 reservoir which is less 6 depleted (and Society ε Nd 4 sometimes enriched) in HIMU incompatible elements. 2 0 • Isotopic compositions 0 St. Helena EM II fall into just a few -2-2 Kerguelen groups: there are only a -4-4 EM I few “flavors” of plumes. -6-6 .702.702 .703.703 .704.704 .705.705 .706.706 .707.707 .708.708 8787Sr/8686Sr Chemical Histories of Mantle Plumes • Apparently, the material in mantle plumes has evolved through just a few pathways. What are these? No one is certain. Some ideas: – 1. Mixing between primitive and depleted mantle – 2. Recycling of oceanic crust and sediment – 3. “Delamination” of the mantle lithosphere beneath the continents, which could be enriched in incompatible elements by melts or fluids migrating into it from below – 4. Component of core material in some plumes? In ideas 2 & 3 above, the material, being dense, would sink to the core-mantle boundary where it would be slowly reheated until it is buoyant enough to rise. a “Primitive” plume source • Mantle Plumes come from a deep “primitive” (i.e., chemically unprocessed since the Earth formed) reservoir. • But their isotopic and trace element compositions are not “primitive”. Recycling of Oceanic Crust • Oceanic crust and and Sediment sediment subducts and sinks to the deep mantle. – This is because it is cold, and rich in iron. • This material is heated by the core, and eventually becomes hotter than overlying mantle. • When hot enough, it rises buoyantly as plumes. Recycling of Subcontinental Lithosphere • Lithosphere beneath continents enriched in incompatible elements by melts from below. • Collisions “delaminate” this lithosphere, which sinks to deep mantle. Where do mantle plumes come from? • must be generated at thermal boundary layer: two possibilities – 660 km discontinuity – the core- mantle boundary D’’ as the source of plumes? • Hot spots seem to be located over regions of high seismic wave velocity gradient in the lower mantle. Seismic Confirmation of Deep Mantle Plumes Montelli et al., Science 303: 338, 2004 Mantle Plumes, Large Igneous Provinces, and Climate • Theory says that new plumes need large heads to initiate buoyant rise. • When these “heads” reach the surface, they produce large pulses of volcanism, know as “flood basalts”, “plateau basalts”, “oceanic plateaus” or “large igneous provinces”. • CO2 released by these events may change climate. Flood Basalts and LIPS (Large Igneous Provinces) Cretaceous Flood Basalts • Numerous new plumes surfaced in the Cretaceous, creating “oceanic plateaus” and flood basalts. • Were these plumes responsible for the warm Cretaceous climate?.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us