Magnetar-Driven Hypernovae

Magnetar-Driven Hypernovae

Close Binary Progenitors Of Gamma Ray Bursts And Hypernovae Maxim Barkov MPI-K Heidelberg, Germany Space Research Institute, Russia Serguei Komissarov University of Leeds, UK 30/06/2011 HEPRO-III, Barcelona 1 Plan of this talk • Gamma-Ray-Bursts – very brief review, • Models of Central Engines, • Numerical simulations I: Magnetic flux, • Magnetic Unloading, • Realistic initial conditions, • Numerical simulations II: Collapsar model, • Common Envelop and X-Ray flares, • Fast Recycling of Neutron Star as Hypernova engine, • Conclusions 3030/06/2011/06/2011 HEPRO-III, Barcelona 2 I. Gamma-Ray-Bursts Discovery: Vela satellite (Klebesadel et al.1973); Konus satellite (Mazets et al. 1974); Cosmological origin: 1. Beppo-SAX satellite – X-ray afterglows (arc-minute resolution) , optical afterglows – redshift measurements – identification of host galaxies (Kulkarni et al. 1996, Metzger et al. 1997, etc)‏ 2. Compton observatory – isotropic distribution (Meegan et al. 1992); Supernova association of long duration GRBs: 1. Association with star-forming galaxies/regions of galaxies; 2. A few solid identifications with supernovae, SN 1998bw, SN 2003dh and others... 3. SN humps in light curves of optical afterglows. 52 4. High-velocity supernovae ( 30,000km/s) or hypernovae (10 erg). 30/06/2011 HEPRO-III, Barcelona 3 Spectral properties: Non-thermal spectrum from 0.1MeV to GeV: Bimodal distribution (two types of GRBs?): long duration GRBs short duration GRBs very long 30/06/2011 HEPRO-III, Barcelona duration GRBs4 Variability: • smooth fast rise + decay; • several peaks; • numerous peaks with substructure down to milliseconds Total power: assumption of isotropic emission Inferred high speed: Too high opacity to unless Lorentz factor > 100 30/06/2011 HEPRO-III, Barcelona 5 The possible scenario of GRB formation in close binary system with BH: 30/06/2011 HEPRO-III, Barcelona 7 II. Relativistic jet/pancake model of GRBs and afterglows: jet at birth (we are here) pancake later 30/06/2011 HEPRO-III, Barcelona 8 Merge of compact stars – origin of short duration GRBs? Paczynsky (1986); Goodman (1986); Eichler et al.(1989); Neutron star + Neutron star Neutron star + Black hole Black hole + compact disk White dwarf + Black hole Burst duration: 0.1s – 1.0s Released binding energy: 30/06/201130/06/2011 HEPRO-III, Barcelona 9 Collapsars– origin of long duration GRBs? Iron core collapses into a black hole: Woosley (1993)‏ “failed supernova”. Rotating envelope MacFadyen & Woosley (1999)‏ forms hyper-accreting disk Collapsing envelope Accretion disk Accretion shock The disk is fed by collapsing envelope. Burst duration > a few seconds 30/06/2011 HEPRO-III, Barcelona 10 Mechanisms for tapping the disk energy Neutrino heating Magnetic braking fireball MHD wind B B Eichler et al.(1989), Aloy et al.(2000) MacFadyen & Woosley (1999) Blandford & Payne (1982)‏ Nagataki et al.(2006), Birkl et al (2007) Proga et al. (2003)‏ Zalamea & Beloborodov (2008,2010) (???)‏ Fujimoto et al.(2006)‏ Mizuno et al.(2004) 3030/06/2011/06/2011 HEPRO-III, Barcelona 11 30/06/2011 HEPRO-III, Barcelona 12 III. Numerical simulations Setup (Barkov & Komissarov 2008a,b) black hole Uniform magnetization (Komissarov & Barkov 2009) M=3Msun R=4500km 27 28 -2 a=0.9 Y= 4x10 -4x10 Gcm Rotation: 2 3 l l0 sin minr / rc ,1 3 v rc=6.3x10 km 17 2 -1 B l0 = 10 cm s v v v • 2D axisymmetric GRMHD; v • Kerr-Schild metric; B • Realistic EOS; • Neutrino cooling; free fall outer boundary, • Starts at 1s from accretion R= 2.5x104 km (Bethe 1990) collapse onset. 30/06/201130/06/2011 HEPRO-III, Barcelona Lasts for < 1s 13 Free fall model of collapsing star (Bethe, 1990)‏ radial velocity: mass density: 1/ 2 t 1 M accretion rate: 1 M 0.1C1 M suns 1s 10M sun Gravity: gravitational field of Black Hole only (Kerr metric); no self-gravity; Microphysics: neutrino cooling ; realistic equation of state, (HELM, Timmes & Swesty, 2000); dissociation of nuclei (Ardeljan et al., 2005); Ideal Relativistic MHD - no physical resistivity (only numerical); 3030/06/2011/06/2011 HEPRO-III, Barcelona 14 Model:A unit length=4.5km 10 t=0.24s C1=9; Bp=3x10 G 3 log B /B log10 (g/cm ) log10 P/Pm 10 p magnetic field lines, and velocity vectors 3030/06/2011/06/2011 HEPRO-III, Barcelona 15 Model:A unit length=4.5km 10 t=0.31s C1=9; Bp=3x10 G 3 log10 (g/cm ) magnetic field lines, and velocity vectors 3030/06/2011/06/2011 HEPRO-III, Barcelona 16 Jets are powered mainly by the black hole via the Blandford-Znajek mechanism !! Model: C • No explosion if a=0; • Jets originate from the black hole; • ~90% of total magnetic flux is accumulated by the black hole; • Energy flux in the ouflow ~ energy flux through the horizon (disk contribution < 10%); • Theoretical BZ power: 50 2 2 51 1 EBZ 3.610 f aY27M2 0.4810 ergs 30/06/2011 HEPRO-III, Barcelona 17 1 17 2 1 M 0.15 M SUN s C1 3 l0 10 cm s B 0.31010G a 0.9 Pg log10() log10 Pm 30/06/2011 HEPRO-III, Barcelona 18 IV. Magnetic Unloading What is the condition for activation of the BZ-mechanism ? 1) MHD waves must be able to escape from the black hole ergosphere to infinity for the BZ-mechanism to operate, otherwise accretion is expected. or 2) The torque of magnetic lines from BH should be sufficient to stop 2 accretion EBZ / Mc 1(???) (Barkov & Komissarov 2008b) E 3.61050 f aY2 M 2 (Komissarov & Barkov 2009) BZ 27 2 a2 f a 2 2 30/06/2011 HEPRO-III, Barcelona 1 1 a 20 The disk accretion relaxes the explosion conditions. The MF lines’ shape reduces E / Mc2 1/10 the local accretion rate. BZ 30/06/2011 HEPRO-III, Barcelona 21 V. Realistic initial conditions • Strong magnetic field suppresses the differential rotation in the star (Spruit et. al., 2006). • Magnetic dynamo can’t generate a large magnetic flux, a relict magnetic field is necessary. (see observational evidences in Bychkov et al. 2009) • In close binary systems we could expect fast solid body rotation. • The most promising candidate for long GRBs is Wolf-Rayet stars. 30/06/201130/06/2011 HEPRO-III, Barcelona 22 Simple model: Barkov & Komissarov (2010) Rstar If l(r)<lcr then matter falling to BH directly If l(r)>lcr then l(r) matter goes to disk and after that to BH BH Agreement with model Shibata&Shapiro (2002) on level 1% 3030/06/2011/06/2011 HEPRO-III, Barcelona 23 Power low density distribution model r 3 30/06/2011 HEPRO-III, Barcelona 24 Realistic model Heger at el (2004) M=35 Msun, MWR=13 Msun 30/06/201130/06/2011 HEPRO-III, Barcelona 25 Realistic model Heger at el (2004) M=20 Msun, MWR=7 Msun M=35 Msun, MWR=13 Msun neutrino limit BZ limit 30/06/2011 HEPRO-III, Barcelona 26 VI. Numerical simulations II: Collapsar model Setup GR MHD 2D black hole M=10 Msun a=0.45-0.6 v Bethe’s B free fall model, T=17 s, C =23 v v 1 v Dipolar v magnetic field Initially solid body rotation B Uniform magnetization Barkov & Komissarov (2010) R=150000km 7 7 B0= 1.4x10 -8x10 G 30/06/2011 HEPRO-III, Barcelona 27 In some cases (30%) one side jets are formed. 30/06/2011 HEPRO-III, Barcelona 28 a=0.6 Ψ=3x1028 a=0.45 Ψ=6x1028 E 10 M V 170 sun kms1 kick 52 10 ergs M bh Model a Ψ28 B0,7 L51 dMBH /dt η A 0.6 1 1.4 - - - B 0.6 3 4.2 0.44 0.017 0.0144 C 0.45 6 8.4 1.04 0.012 0.049 30/06/2011 HEPRO-III, Barcelona 29 VII Common Envelop (CE): few Normal WRS seconds black hole spiralling And Black Hole < 1000 seconds disk formed 5000 seconds MBH left behind jets produced 30/06/2011 HEPRO-III, Barcelona 30 “Canonical” X-ray afterglow lightcurve (Swift) Zhang (2007) 0 1 5 10keV) – 2 3 (0.3 x F 4 10 log 1 2 3 4 5 log10(t/sec) • During CE stage a lot of angular momentum is transferred to the envelop of normal star. see for review • Accretion of the stellar core can (Taam & Sandquist 2000) give the main gamma ray burst. • BZ could work effectively with M 1 1 M 1.4 M suns low accretion rates. 10M sun t td 8000 s • Long accretion disk phase could be as long as 104 s, i.e. a feasible (Barkov & Komissarov 2010) explanation for X-Ray flashes. 30/06/201130/06/2011 HEPRO-III, Barcelona 31 VIII Fast Recycling of Neutron Star as Hypernova engine: Usov(1992), Thompson(1994), Thompson(2005), Bucciantini et al.(2006,2007,2008)‏, Komissarov & Barkov (2007), Barkov & Komissarov (2011) Rotational energy: Wind Power: (i) ultra-relativistic (ii) non-relativistic Gamma-Ray-Repeaters and Anomalous X-ray pulsars - isolated neutron stars with dipolar(?) magnetic field of 1014- 1015 G (magnetars); (Woods & Thompson, 2004) 30/06/2011 HEPRO-III, Barcelona 32 Possible scenario of GRB formation in close binary system with NS: 30/06/2011 HEPRO-III, Barcelona 33 NS in Common Envelop: few Red Giant seconds Neutron star spiralling And Neutron Star < 1000 seconds NS recycled, NS + WR Field generated 5000 seconds MBH left behind jets produced 30/06/2011 HEPRO-III, Barcelona 34 The accretion to NS: the sensitivity to parameters. Barkov & Komissarov (2011) Chevalier (1996) 30/06/2011 HEPRO-III, Barcelona 35 The accretion rate onto the NS in different models 30/06/2011 HEPRO-III, Barcelona 36 De Marco et al (2011) The NS penetration to the envelop of RG Chevalier (1996) 30/06/2011 HEPRO-III, Barcelona 37 NS with dipole field: P=4 ms B=1015 G 퐿 = 3.7 × 1049 erg/s The intensive accretion to NS of matter with accretion rate of 103 Msun/yr can lead to the generation of strong magnetic field.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us