International Journal of Pure and Applied Mathematics ————————————————————————– Volume 18 No

International Journal of Pure and Applied Mathematics ————————————————————————– Volume 18 No

International Journal of Pure and Applied Mathematics ————————————————————————– Volume 18 No. 2 2005, 213-222 NEW WAY FOR A TWO-PARAMETER CANONICAL FORM OF SEXTIC EQUATIONS AND ITS SOLVABLE CASES Yoshihiro Mochimaru Department of International Development Engineering Graduate School of Science and Engineering Tokyo Institute of Technology 2-12-1, O-okayama, Meguru-ku, Tokyo 152-8550, JAPAN e-mail: [email protected] Abstract: A new way for a two-parameter canonical form of sextic equations is given, through a Tschirnhausian transform by multiple steps, supplemented with some solvable cases at most in terms of hypergeometric functions. AMS Subject Classification: 11D41 Key Words: sextic equation, Tschirnhausian transform 1. Introduction 6 6 6−n Actually the general sextic equation x + anx = 0 can be solved in nX=1 terms of Kamp´ede F´eriet functions, and it can be reduced to a three-parameter Received: October 21, 2004 c 2005, Academic Publications Ltd. 214 Y. Mochimaru 6 4 2 resolvent of the form y + ay + by + cy + c = 0 by Joubert [3]. Such a type of the sextic equation was treated by Felix Klein and a part was given in [4]. Other contributions to treatment on sextic equations were given e.g. by Cole [2] and Coble [1]. In this paper, a new way leading to a two-parameter canonical form of sextic equations is given. 2. Analysis 2.1. General Let the original given sextic equation be expressed as 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ ∗ x + a x + b x + c x + d x + e x + f = 0. (1) 3 Here the quantity 5a∗ − 18a∗b∗ + 27c∗ corresponding to the polynomial of the left hand side of equation (1) is invariant with respect to the parallel shift x → x+constant. 3 2.2. In Case of 5a∗ − 18a∗b∗ + 27c∗ = 0 Let x = y − a∗/6, then equation (1) becomes 6 5 ∗2 ∗ 4 25 ∗4 1 ∗2 ∗ ∗ 2 y + − a + b y + a − a b + d y 12 432 6 1 ∗5 1 ∗3 ∗ 1 ∗ ∗ ∗ + − a + a b − a d + e y 81 27 3 35 ∗6 1 ∗4 ∗ 1 ∗2 ∗ 1 ∗ ∗ ∗ + a − a b + a d − a e + f = 0. (2) 46656 432 36 6 3 2.3. In Case of 5a∗ − 18a∗b∗ + 27c∗ = 0 Now apply a Tschirnhausian transform of the following type: 2 −y = p + qx + x . (3) 2 Eliminating x from equation (3) and equation (1) with p = −(a∗ −2b∗ −a∗q)/6, using Sylvester’s resultant, gives 6 4 3 2 y + b0y + c0y + d0y + e0y + f0 = 0, (4) NEW WAY FOR A TWO-PARAMETER CANONICAL... 215 2 b0 ≡ 15p + 5py5 + y4, (5) 3 2 5 ∗3 2 ∗ ∗ ∗ 3 c0 ≡ 20p + 10p y5 + 4py4 + y3 = − a + a b − c q 27 3 5 ∗4 22 ∗2 ∗ 4 ∗2 ∗ ∗ ∗ 2 + a − a b + b + 3a c − 4d q 9 9 3 5 ∗5 26 ∗3 ∗ 26 ∗ ∗2 10 ∗2 ∗ ∗ ∗ 13 ∗ ∗ ∗ + − a + a b − a b − a c + 3b c + a d − 5e q 9 9 9 3 3 5 ∗6 10 ∗4 ∗ 14 ∗2 ∗2 4 ∗3 4 ∗3 ∗ 8 ∗ ∗ ∗ + a − a b + a b − b + a c − a b c 27 9 9 27 3 3 ∗2 4 ∗2 ∗ 2 ∗ ∗ ∗ ∗ ∗ + c − a d + b d + 2a e − 2f , (6) 3 3 4 3 2 d0 ≡ 15p + 10p y5 + 6p y4 + 3py3 + y2, (7) 5 4 3 2 e0 ≡ 6p + 5p y5 + 4p y4 + 3p y3 + 2py2 + y1, (8) 6 5 4 3 2 f0 ≡ p + p y5 + p y4 + p y3 + p y2 + py1 + y0, (9) ∗ ∗2 ∗ y5 ≡−a q + a − 2b , (10) ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗2 ∗ y4 ≡b q + (−a b + 3c ) q − 2a c + b + 2d , (11) ∗ 3 ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ ∗ y3 ≡−c q + (a c − 4d ) q + (3a d − b c − 5e ) q ∗ ∗ ∗ ∗ ∗2 ∗ +2a e − 2b d + c − 2f , (12) ∗ 4 ∗ ∗ ∗ 3 ∗ ∗ ∗ ∗ ∗ 2 y2 ≡d q + (−a d + 5e ) q + (−4a e + b d + 9f ) q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗2 + (−5a f + 3b e − c d ) q + 2b f − 2c e + d , (13) ∗ 5 ∗ ∗ ∗ 4 ∗ ∗ ∗ ∗ 3 y1 ≡−e q + (a e − 6f ) q + (5a f − b e ) q ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗2 + (−4b f + c e ) q + (3c f − d e ) q − 2d f + e , (14) ∗ 6 ∗ ∗ 5 ∗ ∗ 4 ∗ ∗ 3 ∗ ∗ 2 ∗ ∗ ∗2 y0 ≡f q − a f q + b f q − c f q + d f q − e f q + f . (15) Thus if q is to be one of the roots of the cubic equation c0 = 0, then equation (1) becomes 6 4 2 y + b0y + d0y + e0y + f0 = 0. (16) Therefore, now consider a sextic equation of the form: 6 ∗ 4 ∗ 2 ∗ ∗ y + B y + D y + E y + F = 0. (17) 216 Y. Mochimaru 2.4. In Case of B∗ = 0 Apply a Tschirnhausian transform of the type: 2 3 4 −z = p + qy + ry + sy + y . (18) Eliminating y from equation (18) and equation (17), using Sylvester’s resultant, gives 6 n (p + z) Gn (q,r,s)=0 with G6 = 1, (19) Xn=0 ∗ ∗2 ∗ G5 ≡−2B r + 2B − 4D , (20) ∗ 2 ∗2 ∗ ∗2 ∗ 2 ∗ G4 ≡ B q + −2B + 4D qs + B + 2D r + 5E rs ∗3 ∗ ∗ ∗ 2 ∗ ∗3 ∗ ∗ ∗ + B − 3B D + 3F s + 5E q + −2B + 2B D + 6F r ∗ ∗ ∗4 ∗2 ∗ ∗2 ∗ ∗ − 7B E s + B − 4B D + 6D − 4B F , (21) ∗ 2 ∗ 2 ∗ 2 ∗ ∗ ∗ G3 ≡−4D q r − 5E q s − 5E qr + (4B D − 12F ) qrs ∗ ∗ 2 ∗ ∗ ∗ 3 ∗ ∗ 2 + 7B E qs + (−2B D − 2F ) r − 3B E r s ∗2 ∗ ∗ ∗ ∗2 2 ∗2 ∗ ∗ ∗ 3 + −2B D + 2B F + 4D rs + −3B E + 3D E s ∗ ∗ ∗ 2 ∗ ∗ ∗2 ∗ ∗ + (2B D − 6F ) q + 4B E qr + −8D + 16B F qs ∗2 ∗ ∗2 ∗ ∗ 2 ∗2 ∗ ∗ ∗ + 4B D − 4D − 4B F r + 6B E − 2D E rs ∗2 ∗ ∗2 ∗2 ∗ ∗ ∗ 2 ∗2 ∗ ∗ ∗ + 5E + 2B D − 4B F − 2D F s + B E − 11D E q ∗3 ∗ ∗ ∗2 ∗2 ∗ ∗ ∗ ∗2 + −2B D + 2B D + 10B F − 14D F + 5E r ∗3 ∗ ∗ ∗ ∗ ∗ ∗ + −3B E + 6B D E + 11E F s ∗3 ∗ ∗2 ∗2 ∗ ∗ ∗ ∗ ∗2 ∗3 ∗2 − 4B F + 2B D + 8B D F − 4B E − 4D + 2F . (22) G2, G1, G0 are polynomials of degree 4, 5, and 6 with respect to the combination of q, r, and s respectively, and are not shown here. Equation (19) can be rearranged as a polynomial of z: 5 6 n z + Hnz = 0, (23) nX=0 NEW WAY FOR A TWO-PARAMETER CANONICAL... 217 where H5 = 6p + G5, (24) 2 H4 = 15p + 5pG5 + G4, (25) 3 2 H3 = 20p + 10p G5 + 4pG4 + G3, (26) 4 3 2 H2 = 15p + 10p G5 + 6p G4 + 3pG3 + G2, (27) 5 4 3 2 H1 = 6p + 5p G5 + 4p G4 + 3p G3 + 2pG2 + G1, (28) 6 5 4 3 2 H0 = p + p G5 + p G4 + p G3 + p G2 + pG1 + G0. (29) Since H5 is linear in p,q,r,s, and H4 is of second degree, and H3 is of third degree, one way of determing p,q,r,s to satisfy H3 = H4 = H5 = 0 is as follows: at first p,q,r, and s are selected with at least one free parameter so as to satisfy H5 = H4 = 0, then the parameter is determined from the restriction H3 = 0. That is, let q0 be one of the roots of the quadratic equation: ∗ 2 ∗ 2 ∗4 8 ∗2 ∗ ∗ ∗ 2 ∗2 B q0 + 5E q0 − B + B D − 4B F − D = 0. (30) 3 3 3 Using q0, the quantities q1, r1,s1 are defined as ∗ ∗ q1 ≡ 2B q0 + 5E , (31) 4 ∗3 14 ∗ ∗ ∗ r1 ≡ B − B D + 6F , (32) 3 3 ∗2 ∗ ∗ ∗ s1 ≡ −2B + 4D q0 − 7B E . (33) In case of q1 = 0, i.e. ∗2 ∗ 2 ∗4 8 ∗2 ∗ ∗ ∗ 2 ∗2 25E + 4B B − B D + 4B F + D = 0, 3 3 3 q ≡ q0 − (r1r + s1s)/ q1, (34) r ≡ λϕ0, (35) s ≡ µϕ0, (36) where λ, µ are eigenvalues corresponding to the homogeneous part (second de- gree) of H4 = 0. It is necessary only to get the ratio λ/µ or µ/λ through the homogeneous quadratic equation. That is, 2 ∗2 ∗ 16 ∗7 112 ∗5 ∗ 196 ∗3 ∗2 ∗4 ∗ − B + 2D + B − B D + B D + 16B F 3 9 9 9 218 Y. Mochimaru ∗2 ∗ ∗ ∗ ∗2 2 2 − 56B D F + 36B F q1 λ . ∗ 16 ∗6 88 ∗4 ∗ 112 ∗2 ∗2 ∗3 ∗ ∗ ∗ ∗ + 5E + − B + B D − B D −24B F +48B D F 3 3 3 2 56 ∗5 ∗ 196 ∗3 ∗ ∗ ∗2 ∗ ∗ 2 ×q0/ q1 + − B E + B D E − 84B E F q1 3 3 8 ∗5 44 ∗3 ∗ 56 ∗ ∗2 ∗2 ∗ ∗ ∗ + B − B D + B D + 12B F − 24D F q1 λµ 3 3 3 ∗3 ∗ ∗ ∗ ∗5 ∗3 ∗ ∗ ∗2 2 2 + B − 3B D + 3F + 4B − 16B D + 16B D q0 /q1 ∗4 ∗ ∗2 ∗ ∗ 2 ∗3 ∗2 2 + 28B E − 56B D E q0/q1 + 49B E /q1 ∗4 ∗2 ∗ ∗2 + −4B + 16B D − 16D q0/q1 ∗3 ∗ ∗ ∗ ∗ 2 + −14B E + 28B D E /q1 µ = 0 . (37) In case of q1 = 0, i.e. ∗2 ∗ 2 ∗4 8 ∗2 ∗ ∗ ∗ 2 ∗2 25E + 4B B − B D + 4B F + D = 0, 3 3 3 q ≡ q0 + µϕ0, (38) r ≡−s1λϕ0, (39) s ≡ r1λϕ0, (40) ∗ 2 ∗2 ∗ ∗3 ∗ ∗ ∗ 2 B µ + −2B + 4D r1µλ + B − 3B D + 3F r1 2 ∗2 ∗ 2 ∗ 2 + − B + 2D s1 − 5E r1s1 λ = 0. (41) 3 ϕ0 can be determined by H3 = 0 (at most a cubic equation), since all the coefficients appearing in H3,H4, and H5 are rational and each component as a polynomial is irreducible. Finally equation (23) is expressed in the form 6 2 z + Dz + Ez + F = 0.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us