The Banach–Tarski Paradox and Amenability Lecture 12: Compact Groups

The Banach–Tarski Paradox and Amenability Lecture 12: Compact Groups

The Banach{Tarski Paradox and Amenability Lecture 12: Compact Groups 6 September 2011 Invariant means and amenability Definition Let G be a locally compact group. An invariant mean is a linear 1 functional m : L (G) ! R such that: 1. m(f ) ≥ 0 if f ≥ 0 2. m(χG ) = 1 3. m(g · f ) = m(f ) for all g 2 G and f 2 L1(G) Definition A locally compact group G is amenable if it admits an invariant mean. Finite groups are amenable Let G be a finite group. Then L1(G) is the space of all functions f : G ! R. 1 We construct an invariant mean m : L (G) ! R by averaging. Given f : G ! R define 1 X m(f ) := f (g) jGj g2G Then it is not hard to verify that m is linear and that 1. m(f ) ≥ 0 if f ≥ 0 2. m(χG ) = 1 3. m(g · f ) = m(f ) for all g 2 G and f 2 L1(G) Theorem Let G be a finite group. Then G is amenable. Compact groups We usually just write compact group for compact topological group. Every compact topological group G is locally compact, because every point g 2 G has an open neighbourhood (all of G) which is contained in a compact set (all of G). So compact groups have a Haar measure. A group G with the discrete topology is compact if and only if G is finite. That is, discrete groups are compact if and only if they are finite. An infinite group G will always be non-compact in the discrete topology, but G infinite might (or might not) be compact in some other topology. Examples and non-examples of compact groups n Recall that a subset A ⊂ R (with its usual topology) is compact if and only if A is closed and bounded. This fact explains the following examples. Examples 1. The circle group T, with its usual topology, is compact. n 2. The additive groups R and R are not compact. × 3. The multiplicative group R is not compact. 4. GL(n; R) is not compact. 5. The subgroup of GL(2; R) given by x y G = : x 6= 0; y 2 0 x−1 R is not compact. Haar measure on compact groups Let G be a compact group with left-invariant Haar measure µ. Lemma The Haar measure of the compact group G is positive and finite. That is, for G compact with Haar measure µ, 0 < µ(G) < 1 This lemma follows from: Proposition Let G be a locally compact group with Haar measure µ. If K is a compact subset of G then 0 ≤ µ(K) < 1 Compact sets having finite measure is often included in the definition of Haar measure. It can be proved from µ being a regular Borel measure using the Riesz Representation Theorem. Amenability of compact groups Let G be a compact group. Let µ be a left-invariant Haar measure on G. We may as well normalise so that µ(G) = 1. 1 We construct an invariant mean m : L (G) ! R by averaging. Given a measurable, essentially bounded function f : G ! R define 1 Z Z m(f ) := f dµ = f dµ µ(G) G G This integral exists and is well-defined on equivalence classes in L1(G). Compact groups are amenable From properties of the Haar integral, it is not hard to verify that m is linear and that 1. m(f ) ≥ 0 if f ≥ 0 2. m(χG ) = 1 3. m(g · f ) = m(f ) for all g 2 G and f 2 L1(G) That is, m is an invariant mean on G. Theorem Let G be a compact group. Then G is amenable. The torus is compact n The n{dimensional torus T is defined to be the direct product of iθ n copies of the circle group T = fe : θ 2 Rg n ∗ ∗ T = T × · · · × T ≤ C × · · · × C | {z } | {z } n times n times Since T is compact, Tychonoff's Theorem (for finite products of n compact spaces) tells us that the torus T is compact. n Hence T is amenable. Direct products and Haar measure Let G1 and G2 be locally compact groups. Let G = G1 × G2 with the product topology. A basis for this topology is products U1 × U2 where for i = 1; 2, the set Ui is open in Gi . Then G is a locally compact group. Now for i = 1; 2 let µi be a left-invariant Haar measure on Gi .A left-invariant Haar measure µ on G is then given by Z µ(A) = 1 dµ1 dµ2 A where A is a Borel subset of G. Orthogonal groups and special orthogonal groups n Let h·; ·i be the usual inner product on R . Let Mn(R) be the set of all n × n matrices with entries in R. Definitions 1. The orthogonal group n O(n; R) := fA 2 Mn(R) j hAx; Ayi = hx; yi for all x; y 2 R g 2. The special orthogonal group SO(n; R) := fA 2 O(n; R) j det(A) = 1g We will see later that with the discrete topology, O(n; R) and SO(n; R) are amenable if and only if n ≤ 2. We first consider O(n; R) and SO(n; R) as non-discrete groups. Orthogonal groups are compact We will show that O(n; R) is compact (as a non-discrete group). It suffices to show that O(n; R) is closed and bounded as a subset of n2 R . To see that O(n; R) is closed, note that a matrix A is in O(n; R) if and only if it satisfies the matrix equation AAt = I That is, the entries of A satisfy n2 polynomial equations, one for each entry of I . So the orthogonal group can be viewed as the n2 subset of R which is the intersection of the set of solutions of 2 these n polynomial equations. Hence O(n; R) is a closed subset of n2 R . Orthogonal groups are compact To see that O(n; R) is bounded, let A 2 O(n; R). Then if the n vector v 2 R is a column of A, we have 2 2 1 = hv; vi = v1 + ··· + vn Thus each entry aij of A satisfies jaij j ≤ 1. So O(n; R) forms a n2 bounded subset of R . Therefore O(n; R) is compact. Thus O(n; R), as a non-discrete group, is amenable. Special orthogonal groups are compact SO(n; R) is a closed subset of the compact set O(n; R). Hence SO(n; R) is compact. Thus SO(n; R), as a non-discrete group, is amenable. Connected components of compact groups A compact group has finitely many connected components, since each connected component is open. In O(n; R), the special orthogonal group is the connected component containing the identity, and there is one other component, which consists of orthogonal matrices with determinant −1. Unitary and special unitary groups are compact n Let h·; ·i be the usual Hermitian inner product on C hz; wi = z1w1 + z2w2 + ··· + znwn Let Mn(C) be the set of all n × n matrices with entries in C. Definitions 1. The unitary group n U(n; C) := fA 2 Mn(C) j hAz; Awi = hz; wi for all z; w 2 C g 2. The special unitary group SU(n; C) := fA 2 U(n; C) j det(A) = 1g A similar argument to that for orthogonal and special orthogonal groups shows that unitary and special unitary groups are compact. Hence they are amenable. Sp(n) is compact Denote by H the quaternions z = a + bi + cj + dk where a; b; c; d 2 R and i; j; k satisfy the equations i 2 = j2 = k2 = −1 ij = k jk = i ki = j We define z = a − bi − cj − dk n Let h·; ·i be the usual Hermitian inner product on H hz; wi = z1w1 + z2w2 + ··· + znwn Let Mn(H) be the set of all n × n matrices with entries in H. Definition The symplectic group n Sp(n) := fA 2 Mn(H) j hAz; Awi = hz; wi for all z; w 2 H g The group Sp(n) is compact hence amenable..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us