Bibliography

Bibliography

Bibliography Adasch, N.; Ernst, B. [1]: Ultra-DF-Räume mit relativ kompakten beschränkten Teil­ mengen. Math. Ann. 206 (1973) 79-87 Adasch, N.; Ernst, B. [2]: Lokaltopologische Vektorräume. Collectanea Math. 25 (1974) 255-274 Adasch, N.; Ernst, B. [3]: Lokaltopologische Vektorräume II. Collectanea Math. 26 (1975) 13-18 Adasch, N.; Ernst, B.; Keim, D. [1]: Topological vectorspaces. Berlin-Heidelberg-NewYork 1978. = Lecture Notes in Mathematics, vol. 639 Alaoglu, L. [1]: Weak topologies on normed linear spaces. Ann. ofMath. 41 (1940) 252-267 Amemiya, 1.; Kömura, Y. [1]: Über nicht-vollständige Montelräume. Math. Ann.177 (1968) 273-277 Aoki, T. [1]: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18 (1942) 588-594 Apiola, H. [1]: Duality between spaces of p-summable sequences, (p, q)-summing operators, and characterizations of nuclearity. Math. Ann. 219 (1976) 53-64 Apiola, H. [2]: Every nuc1ear Frechet space is a quotient of a Köthe-Schwartz space. Arch. Math. 35 (1980) 559-573 Arens, R. [1]: Duality in linear spaces. Duke Math. J. 14 (1947) 787-794 Arens, R.; Eells, J. [1]: On embedding uniform and topological spaces. Pacific J. Math. 6 (1956) 397-403 Arsover,.M.G. [1]: The Paley-Wienertheoreminmetriclinearspaces. PacificJ. Math.l0 (1960) 365-379 Arsove, M.G.; Edwards,R.E. [1]: Generalized bases in topologicallinear spaces. Studia Math. 19 (1960) 95-113 Baernstein, A. [1]: Representation of holomorphic functions by boundary integrals. Trans. Amer. Math. Soc. 160 (1971) 27-37 Baire, P. [1]: Sur les fonctions des variables reelles. Ann. of Math. 3 (1899) 1-32 Banach, S. [1]: Sur les fonctionelles lineaires. Studia Math. 1 (1929) 211-216 Banach, S. [2]: Sur les fonctionelles lineaires H. Studia Math. 1 (1929) 223-239 Banach, S. [3]: Theoremes sur les ensembles de premiere categorie. Fund. Math. 16 (1930) 395-398 Banach, S. [4]: Theorie des operations lineaires. Warszawa 1932 Banach, S.; Mazur, S. [1]: Zur Theorie der linearen Dimension. Studia Math. 4 (1933) 100-112 Banach, S.; Steinha us, H. [1]: Surle principe de la condensation de singularites. Fund. Math. 9 (1927) 50-61 Bibliography 521 Bartle,R.G.; Dunford, N.; Schwartz,J. [1]: Weak compactness and vector measures. Canad. J. Math. 7 (1955) 289-305 Bauer, H. [1]: Konvexität in topologischen Vektorräumen. Lectures, Univ: Hamburg 1963-64 Beattie, R. [1]: Continuous convergence and the Hahn-Banach problem. BuH. Austra!. Math. Soc. 17 (1977) 467--473 Bellenot, S.F. [1]: The Schwartz-Hilbert variety. Mich. Math. J. 22 (1975) 373-377 Bellenot, S. F. [2]: Basic sequences in non-Schwartz-Frechet spaces. Trans. Amer. Math. Soc. 258 (1980) 199-216 Bellenot, S.F. [3]: Each Schwartz Frechet space is a subspace ofa Schwartz Frechet space with an unconditional basis. Preprint Benedetto, J.J. [1]: Real variable and integration. Stuttgart 1976 Bennett, G.; Cooper,J.B. [1]: (LF)-spaces with absolute bases. Proc. Cambr. Phi!. Soc. 67 (1970) 283-286 Bennett, G.; Kalton, N.J. [1]: FK-spaces containing co. Duke Math. J. 39 (1972) 561-582 Berezanskn, LA. [1]: Inductively reflexive, 10caHy convex spaces. Dok!. Akad. Nauk SSSR 182 (1968) 20-22. Eng!. trans!. in Soviet Math. 9 (1968) 1080-1082 Bessaga, C. [1]: Nuclear Frechet spaces without bases 1. Variations on a theme ofDjakov and Mitiagin. BuH. Acad. Polon. Sci. 24 (1976) 471--473 Bessaga, C. [2]: Nuclear spaces without bases. A proof of Dubinsky's theorem. Functional Analysis Seminar Notes. Univ. of Michigan, Ann Arbor 1978 Bessaga, C.; Dubinsky, E. [1]: Nuclear Frechet spaces without bases III. Every nuclear Frechet space not isomorphic to ()J admits a subspace and a quotient space without a strong finite dimensional decomposition. Archiv Math. 31 (1978) 597-604 Bessaga, c.; Petczynski, A. [1]: On a class of Bo-spaces. BuH. Acad. Polon. Sci. 5 (1957) 375-377 Bessaga, c.; Petczynski, A. [2]: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958) 151-164 Bessaga, C.; Petczynski, A. [3]: Wlasnosci baz w przestrzeniach typu Bo. Prace Mat. 3 (1959) 123-142 Bessaga, c.; Petczynski,A. [4]: On the embedding of nuclear spaces in the space of aH infinitely differentiable functions on the line. Dok!. Akad. Nauk SSSR 134 (1960) 745-748. Eng!. trans!. in Soviet Math. Dokl. 1 (1961) 1122-1125 Bessaga, c.; Petczynski, A. [5]: Some remarks on homeomorphisms of F-spaces. BuH. Acad. Polon. Sci. 10 (1962) 265-270 Bessaga, C.; Petczynski, A. [6]: Selected topics in infinite-dimensional topology. Warszawa 1975 Bessaga, c.; Petczynski, A.; Rolewicz, S. [1]: Some properties of the norm in F-spaces. Studia Math. 16 (1958) 183-192 Bessaga, c.; Petczynski, A.; Rolewicz, S. [2]: On diametral approximative dimension and linear homogeneity of F-spaces. BuH. Acad. Polon. Sci. 9 (1961) 677-683 Bierstedt, K.D. [1]: Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. 1. J. Reine Angew. Math. 259 (1973) 186--210 Bierstedt, K.D. [2]: Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. II. J. Reine Angew. Math. 260 (1973) 133-146 522 Bibliography Bierstedt, K.D.; Meise, R. [1]: Bemerkungen über die Approximationseigenschaft lokal­ konvexer Funktionenräume. Math. Ann. 209 (1974) 99-107 Bierstedt, K.D.; Meise, R [2]: Induktive Limites gewichteter Räume stetiger und holomor­ pher Funktionen. J. Reine Angew. Math. 282 (1976) 186-220 Binz, E. [1]: Continuous convergence onCC(X). Berlin-Heide1berg-NewYork 1975. = Lecture Notes in Mathematics, vo!. 469 Birkhoff, G. [1]: A note on topological groups. Compositio Math. 3 (1936) 427-430 Bishop, E. [1]: A generalization of the Stone-Weierstrass theorem. Pacific J. Math. 11 (1961) 777-783 Bourbaki, N. [1]: Algebre. Ch. 2: Algebre lineaire (Nouv. ed.). Paris 1970 Bourbaki, N. [2]: Topologie generale 1. Ch. 1 ä. 4 (Nouv. ed.). Paris 1971 Bourbaki, N. [3]: Topologie generale H. Ch. 5 ä. 10 (Nouv. M.). Paris 1974 Bourbaki, N. [4]: Espaces vectorie1s topologiques. Ch.I&H (2Ome ed.). Paris 1966 Bourbaki, N. [5]: Espaces vectoriels topologiques. Ch. III ä. V (2Ome M.). Paris 1967 Brace, J. W. [1]: Transformations in Banach spaces. Thesis. Cornell Univ. lthaca, N.Y. 1953 Brudovskn, B.S. [1]: Compatibility conditions in locally convex spaces. Dokl. Akad. Nauk SSSR 152 (1963) 1031-1033. Eng!. trans!. in Soviet Math. 4 (1963) 1472-1474 Brudovski\ B.S. [2]: Associated nuc1ear topology, mappings oftype s, and strongly nuc1ear spaces. Dokl. Akad. Nauk SSSR 178 (1968) 271-273. Eng!. trans!. in Soviet Math. 9 (1968) 61-63 Buchwalter, H. [1]: Topologies et compactologies. Pub!. Dept. Math. Lyon 6-2 (1969) 1-74 Buchwalter, H. [2]: Parties bornees d'un espace topologique completement regulier. Sem. Choquet 9 1969-70 exp. 14 Buchwalter, H. [3]: Produit topologique, produit tensoriel, et c-repletion. Bull. Soc. Math. France, Mem. 31-32 (1972) 51-71 Buchwalter, H. [4]: Sur le theoreme de Nachbin-Shirota. J. Math. Pures App!. 51 (1972) Buchwalter, H.; Schmets, J. [1]: Sur quelques propriHes de l'espace rc.(T). J. Math. Pures App!. 52 (1973) 337-352 Buck, R.C. [1]: Bounded continuous functions on a locally compact space. Mich. Math. J. 5 (1958) 95-104 C al ki n, J. W. [1] : Two-sided ideals and congruences in the ring ofbounded operators in Hilbert space. Ann. of Math. 42 (1941) 839-873 Choquet, G. [1]: Une c1asse reguliere d'espaces de Baire. C.R. Acad. Sci. Paris 246 (1958) 218-220 Choquet, G.; Meyer, P.A. [1]: Existence et unicite des representations integrales dans les convexes compactes que1conques. Ann. Inst. Fourier 13 (1963) 139-154 Christensen,J.P.R. [1]: Compact convex sets and compact Choquet simplexes. Inventiones math. 19 (1973) 1-4 Clarkson, J.A. [1]: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936) 396-414 Cohen, J.S. [1]: Absolutely p-summing, p-nuc1ear operators and their conjugates. Math. Ann. 201 (1973) 177-200 Collins, H.J. [1]: Completeness and compactness in linear topological spaces. Trans. Amer. Math. Soc. 79 (1955) 256-280 Bibliography 523 Collins, H.l. [2]: Strict, weighted, and mixed topologies and applications. Advances in Math. 19 (1976) 207-237 Collins, H.S.; Dorroh, 1.R. [1]: Remarks on certain function spaces. Math. Ann. 176 (1968) 157-168 Cook, C.H.; Fischer, H.R. [1]: On equicontinuity and continuous convergence. Math. Ann. 159 (1965) 94-104 Cooper, 1. B. [1]: The strict topology and spaces with mixed topologies. Proc. Amer. Math. Soc. 30 (1971) 583-592 Cooper, J.B. [2]: Saks spaces and applications to functional analysis. Amsterdam-New York-Oxford 1978 Crone, L.; Robinson, W.B. [1]: Every nuclear Frechet space with a regular basis has the quasi-equivalence property. Studia Math. 52 (1975) 203-207 Davie, A. M. [1]: The approximation problem for Banach spaces. BuH. London Math. Soc. 5 (1973) 261-266 Davis, W.l.; Figiel, T.; lohnson, W.B.; Petczynski,A. [1]: Factoring weakly compact operators. J. Funct. Analysis 17 (1974) 311-327 Day, M. M. [1]: The spaces ,pP with 0 < p < 1. BuH. Amer. Math. Soc. 46 (1940) 816-823 Day, M. M. [2]: On the basis problem in normed spaces. Proc. Amer. Math. Soc. 13 (1962) 655-658 Day, M. M. [3]: Normed linear spaces. (3 rd ed.) Berlin-Heidelberg-New York 1973. = Ergebnisse der Mathematik und ihrer Grenzgebiete, vo!. 21 Dazord,l. [1]: Factoring operators through co. Math. Ann. 220 (1976) 105-122 Dean, D.W. [1]: The equation L(E,X**) = L(E,X)** and the principle oflocal reflexivity. Proe. Amer. Math. Soe. 40 (1973) 146-148 De Branges, L. [1]: The Stone-Weierstrass theorem. Proc. Amer. Math. Soe. 10 (1959) 822-824 De Wilde, M. [1]: Reseaux dans les espaees lineaires a semi-normes. Mem. Soe. Roy. Sci. Liege 18 (1969) fase. 2 De Wilde, M.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us