Generation of pure iron nanostructures via electron-beam induced deposition in UHV ________________________________ Erzeugung von reinen Eisen-Nanostrukturen mittels elektronenstrahlinduzierter Abscheidung im UHV ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Thomas Lukasczyk aus Erlangen Als Dissertation genehmigt durch die Naturwissenschaftliche Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: _________ Vorsitzende/r der Promotionskommission: Prof. Dr. Bänsch Erstberichterstatter/in: Prof. Dr. Steinrück Zweitberichterstatter/in: Prof. Dr. Diwald Table of contents List of abbreviations ........................................................................... IV 1 Introduction.........................................................................................1 2 Fundamentals and techniques.............................................................5 2.1 Scanning electron microscopy (SEM)......................................................... 5 2.2 Auger electron spectroscopy (AES) ..........................................................12 2.3 Scanning Auger electron microscopy (SAM) and Auger line scans.........16 2.4 Scanning tunneling microscopy (STM).....................................................18 2.5 Quadrupole mass spectrometry (QMS) .....................................................19 2.6 Low energy electron diffraction (LEED) ..................................................20 2.7 Electron-beam induced deposition (EBID) ...............................................21 2.8 The precursor iron pentacarbonyl..............................................................32 3 Experimental setup ...........................................................................37 3.1 Vacuum system..........................................................................................37 3.1.1 Preparation chamber and fast entry lock chamber...................................................42 3.1.2 Analysis chamber.....................................................................................................46 3.1.3 Gas dosage system ...................................................................................................53 3.1.4 Gas Purification and Monitoring (GPM) chamber ..................................................56 3.2 Lithographic attachment ............................................................................59 3.3 Applied materials.......................................................................................61 3.4 Experimental details and data processing..................................................63 4 Testing the Instrument: first EBID experiments ..............................77 4.1 Introduction................................................................................................77 4.2 Electron-beam lithography with PMMA...................................................77 4.2.1 Basic principles of lithography with resist samples.................................................78 4.2.2 Results and discussion .............................................................................................82 4.3 EBID of carbonaceous structures ..............................................................85 4.3.1 Characterization of the precursor.............................................................................85 4.3.2 Results and discussion .............................................................................................86 4.4 Summary and conclusions .........................................................................96 I 5 Iron pentacarbonyl on Rh(110) ........................................................99 5.1 Introduction................................................................................................99 5.2 The Rh(110) surface ................................................................................100 5.3 Preparation of Rh(110) in an UHV-SEM ................................................104 5.4 Visualizing reduction fronts on Rh(110) .................................................109 5.5 Influence of additional gas dosage...........................................................118 5.6 Surface quality determines the selectivity of EBID ................................124 5.6.1 Iron deposition on different sample states.............................................................125 5.6.2 Reduction of the autocatalytic behavior via a thin titanium layer.........................133 5.6.3. Summary...............................................................................................................140 5.7 Effect of the electron dose on the EBID process.....................................142 5.8 Thermal stability of iron structures..........................................................148 5.9 Selective oxidation of the iron structures ................................................154 5.10 Summary and conclusions .....................................................................157 6 Iron pentacarbonyl on silicon single crystal surfaces ....................161 6.1 Introduction..............................................................................................161 6.2 The substrates: Si(111) and Si(100) ........................................................162 6.3 Influence of the beam energy on the electron exit area...........................166 6.4 Material parameters in EBID with Fe(CO)5 on silicon ...........................170 6.4.1 Deposition of iron on Si(100) at room temperature ..............................................171 6.4.2 Influence of the precursor gas purity.....................................................................179 6.4.3 Deposition under clean conditions at 200 K..........................................................186 6.4.4 EBID with Fe(CO)5 on Si(111) .............................................................................193 6.5 Influence of the electron dose on the iron cluster density.......................196 6.6 Thermal stability of iron clusters on silicon ............................................204 6.7 Application: carbon nanotube growth on iron deposits...........................211 6.8 Summary and conclusions .......................................................................220 7 Summary.........................................................................................223 8 Zusammenfassung ..........................................................................227 9 Appendixes .....................................................................................231 9.1 Appendix to Chapter 3.............................................................................231 II 9.1.1 Electron filament setup in the preparation chamber ..............................................231 9.1.2 Characteristics of the different sample holder setups ............................................232 9.1.3 Scheme of the preparation chamber with port designation....................................234 9.1.4 Modification of the preparation chamber manipulator ..........................................236 9.1.5 Scheme of the analysis chamber with port designation.........................................239 9.1.6 Gas doser design ....................................................................................................242 9.1.7 Precursor storage device ........................................................................................243 9.1.8 Images of GPM-chamber.......................................................................................243 9.1.9 Manipulator positions in the preparation chamber ................................................244 9.1.10 Experimental parameters .....................................................................................245 9.1.11 Reference values for carbon and oxygen contaminations....................................247 9.2 Appendix to Chapter 5.............................................................................249 9.2.1 Auger line scans on Sample III and Sample III-Ti ................................................249 9.3 List of applied data ..................................................................................251 References..........................................................................................255 III List of abbreviations AE Auger electron AES Auger Electron Spectroscopy AFM Atomic Force Microscopy BSE Backscattered electron CCM Constant Current Mode CEM Channel Electron Multiplier CHM Constant Height Mode CMA Cylindrical Mirror Analyzer CNT Carbon Nanotube CVD Chemical Vapor Deposition DD Dipolar Dissociation DEA Dissociative Electron Attachment DI Dipolar Ionization EBID Electron-Beam Induced Deposition EBIE Electron-Beam Induced Etching EBIP Electron-Beam Induced Processing EBL Electron-Beam Lithography EDX Energy Dispersive X-ray analysis EELS Electron-Energy Loss Spectroscopy ESD Electron Stimulated Desorption ESEM Environmental Scanning Electron Microscope fcc Face centered cubic FEL Fast Entry Lock (chamber) FSE Forward scattered electrons GPM Gas Purification and Monitoring (chamber) HSA Hemispherical Energy Analyzer HV High vacuum IMFP Inelastic Mean Free Path IPA Isopropanol LDOS Local Density of States LEED Low Energy Electron Diffraction LLE Low-loss electrons IV MIBK Methyl isobutyl ketone PBN Pyrolytic Boron Nitride
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages275 Page
-
File Size-