UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIP. INGEGNERIA AGRARIA ED AGRONOMIA International workshop OZONE RISK ASSESSMENT FOR EUROPEAN VEGETATION 10-11 May 2007 Villa Orlandi, Anacapri, Capri island (Naples, Italy) PROGRAMME 10 May 15.30-17.00 Welcome and Registration 17.00-17.15 Presentation of the workshop programme (Fagnano M.) 17.15-17.30 Scientific policy developments in the European Commission about ozone effects on vegetation (S.Cieslik) Session 1. Knowledge gaps in the ozone flux concept Chairman: G.Mills 17.30-17.40 Challenge towards mechanistic O3 risk assessment in forest trees (R. Matyssek, W. Oßwald, G. Wieser) 17.45-17.55 Promoting the O3 flux concept for European crops (H. Pleijel) 18.00-18.10 Long-term ozone enrichment study: how to estimate the flux? (J. Fuhrer, C. Ammann) 18.15-18.25 Flux modeling work of the LRTAP Convention (L.Emberson) 18.30-19.30 Discussion 20.30 Dinner 11 May Session 2. Activity of the Steering Group of the Ozone Risk Assessment Network. Chairman: S.Cieslik 8.30-8.45 Post Ispra activities (S.Cieslik) 8.45-9.00 Forest (R.Matyssek) 9.00-9.15 Seminatural Vegetation (N.Cape) 9.15-9.30 Crops (M.Fagnano) Session 3. Specific problems of Mediterranean vegetation Chairman: P.Dizengremel 9.30-9.40 Ozone effects on Mediterranean Forests (E.Paoletti) 9.45-9.55 Ozone effects on Mediterranean crops (A.Maggio) 10.00-10.10 Ozone effects on Mediterranean (semi-)natural vegetation (B.Gimeno) 10.15-10.30 Discussion 10.30-11.00 Coffee break Session 4. Methodological aspects Chairman: A. Maggio 11.00-11.10 Cellular and molecular aspects of ozone flux and impact on higher plants (P.Dizengremel) 11.15-11.25 Upscaling concepts of O3 flux: leaf to landscape (Matyssek, Paoletti, Wieser, Cieslik, Ceulemans) 11.30-11.40 Flux measurements and modeling on fruit trees: methodological approach (G.Rana, F.De Lorenzi) 11.45-11.55 Flux measurement and modeling at canopy level (L. Gruenhage, G. Gerosa, A. Vermeulen) 12.00-13.00 Discussion 13.00-14.00 Lunch Session 5. Interactions with other European models Chairman: L.Gruenhage 14.00-14.15 Modelling and observation of root water uptaking for agricultural crops (D’Urso G., Palladino M.) 14.15-14.25 APES: an integrated framework for potential implementation of ozone impact models (M.Donatelli) 14.30-16.00 Free parallel sessions 16.00-16.30 Coffee break Session 6. General discussion and Preparation of common documents Chairman: M.Fagnano & N.Cape 16.30-17.00 The research needs of ozone/vegetation interactions, at scientific and decision-maker levels: crops & seminaturals Chairman:R.Matyssek 17.00-17.30 The research needs of ozone/vegetation interactions, at scientific and decision-maker levels: forest Conclusions of the workshop Chairman: S.Cieslik 17.30-18.30 Discussion and approval of common documents toward FP7 applications. Università degli Studi di Napoli - Federico II Faculty of Agriculture International workshop OZONE RISK ASSESSMENT FOR EUROPEAN VEGETATION 10-11 May 2007 Villa Orlandi, Anacapri TYPICAL RURAL LANSCAPES Orchards: fruit tree cultivation started from the Vesuvian area (i.e. apricot) Mixed crops: 3 floor farming (1st vegetables, 2nd grape/orange, 3rd walnut/kaki/cherry) 3 crops in 1 year (tomato: Apr-Aug – cauliflower: Aug- Dec – early potato: Dec-Apr) Terraces: grape, lemons, olive Roman “Centuriazione”: orthogonal fields bordered by rows of trees Vite “maritata” (married): grape grown on tall trees (elm, poplar) 11 May 14.30-16.00 Free parallel sessions 1 Legge Integration of research needs 2 Cermak J., Zapletal Sap flow, eddy covariance and related techniques applicable M., Cudlín P. for ozone studies 3 Dieter Ernst Molecular aspects of ozone flux 4 Fagnano Choosing the crops 5 Dizengremel Organization of tasks in physiology and biochemistry 6 Rana Problems in studying the ozone impact on tree crops 7 Mills crops 8 Vandermeiren Quality aspects of crops 9 Saitanis Tropospheric ozone: a menace for crops and natural vegetation in Greece 10 Wieser Flux measurements at the stand level 11 Oksanen Impacts of ozone on birch 12 Matyssek FOREST 13 Oßwald FOREST 14 Braun FOREST 15 Meister Estimating ozone impacts: mapping errors of BGC-model Bolhar-nordenkampf predictions vs. modelled ozone uptake 16 Bolhar-nordenkampf Apoptosis caused by reactive oxygen species, a common Meister stress response? FluxFlux measurementsmeasurements andand modellingmodelling onon fruitfruit trees:trees: methodologicalmethodological approachapproach GianfrancoGianfranco RanaRana(1) && FrancescaFrancesca DeDe LorenziLorenzi(2) (1)CRA-Agronomical Research Institute, Bari, Italy (2)CNR-ISAFOM, Naples, Italy MethodsMethods availableavailable forfor fluxflux measurementsmeasurements inin orchardorchard cropscrops Actual evapotranspiration (ET) – Micrometeorological Bowen ratio Aerodynamic EdEddydy covariance Problems: large plot needed, difficult management and maintenance, expensive – Soil water balance Problems: capillary rising and drainage difficult to estimate under Mediterranean conditions, large time scale Actual transpiration (T) – Sap flow technique BackgroundBackground andand PrinciplesPrinciples TheThe transpirationtranspiration (water(water lossloss throughthrough thethe stomata)stomata) atat plantplant scalescale isis measuredmeasured byby thethe sapsap flowflow ThreeThree techniquestechniques availableavailable 1.1. StemStem heatheat balancebalance 2.2. ThermalThermal dissipationdissipation ““GranierGranier”” 3.3. HeatHeat pulsepulse UpUp--scalingscaling neededneeded fromfrom plantplant toto standstand 1.1. StemStem heatheat balancebalance QQQQi= v+ r+ f Qi heat supplied (costant) Qv vertical heat conduction Qr radial heat conduction Qf heat convection through sap flow Mass flow rate of the water in the branch Q F = f wΔTc Qf heat convection – cw heat capacity of sap – ΔT temperature gradient across the heater BILANCIO TERMICO IN FUSTO DI GIRASOLE 11 agosto 1999 eclissi di sole Heat balance in a vine 11 August 1999 eclipse 0.5 60 800 0.4 ) 600 R g 40 ( 0.3 h-1 W m-2 (g 400 0.2 20 ) flow p 200 flusso di calore (W) calore di flusso 0.1 sa 0 0 0 0 400 800 1200 1600 2000 0 5 10 15 20 ora solare ora solare calore fornito (Qi) conduzione verticale (Qv) conduzione radiale (Qr) flusso di calore nella linfa (Qf) sap flow radiazione solare 2.2. ThermalThermal dissipationdissipation ““GranierGranier”” UP Sap flow system Heat transport With sap flow Floema Cambium Heated gauge Xilema activo Not heated gauge 1 . 231 Δ⎛ TTmax − Δ⎞ Fd118= .⎜ 99 ⎟ ⎝ ΔT ⎠ ΔTmax minimum (or zero) sap flow during the night) ExampleExample ofof datadata analysisanalysis ((clementineclementine)) 22 800,0 cloudy, very hot clear, very hot rain, hot 20 700,0 18 600,0 16 14 500,0 dT 1 dT 2 12 vpd 400,0 Rg 10 Rg (W m-2) dT (°C) vpd (kPa*10) 8 300,0 6 200,0 4 100,0 2 0 0,0 0 0 0 600 600 600 1800 1200 1800 1200 1800 1200 solar time transpirationtranspiration DAILY COURSE OF SAP FLOW, VAPOUR PRESSURE DEFICIT AND SOLAR RADIATION ON DOY 288 289 290 291 2.0 800 1.8 1.6 600 1.4 1.2 1.0 400 0.8 (MJ m-2 day-1) Global Radiation Sap Flow (gSap s-1) 0.6 200 Vapour Pressure Deficit (kPa) 0.4 0.2 0.0 0 0 600 1200 1800 0 600 1200 1800 0 600 1200 1800 0 600 1200 1800 solar time flow w est branch flow east branch Vapour Pressure Deficit Global Radiation UpUp--scalingscaling fromfrom treetree toto standstand Variables used: - Leaf surface - Sapwood area - Diameter trunck - Dimension of the crown 1. direct method: it links the transpiration to the evaporative green surface; it is based on the analysis of spatial variability of plant leaf area 2. indirect method: it supposes a relationship between the stem diameter and the transpiration leaf area of the plant; it is based on the spatial variability of the plant diameter Example:Example: clementineclementine treestrees underunder MediterraneanMediterranean climateclimate 8 ) 2 6 y=1081.6x1.79 r2=0.859 anch (m r b r 4 ea pe r a f total lea 2 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 branch diameter (m) ComparisonComparison eddyeddy covariance/sapcovariance/sap flowflow atat standstand levellevel ((clementineclementine)) 1.00 5 August 2001 0.50 h) / lux (mm f 0.00 E ec T sf -0.50 0 6 12 18 24 time ConclusionsConclusions onon thethe sapsap flowflow techniquetechnique forfor fruitfruit treestrees AdvantagesAdvantages In situ measurements at plant level Does not modify the crop microclimate Good time risolution Automatic and continuous data collection DisadvantagesDisadvantages Accuracy at stand level (variable by species) Expensive (?): 300€/plant The gauges can be fragile FluxFlux modelling:modelling: brainstormingbrainstorming aboutabout thethe canopycanopy resistanceresistance * Δ + γ D r = ρc p ARG= n − Δγ A * γ r r ⎛ r* ⎞ 1+ c = f ⎜ ⎟ Δ γ+ Δra ⎜ ⎟ EAλ = ra ⎝ ra ⎠ Δ +γ γ rc * 1+ rc r γ+ Δra =a +b ra ra 0.20 rc/ra=0.226r*/ra+0.004 r2=0.60 0.16 0.12 a r / c r 0.08 0.04 0.00 0.00 0.20 0.40 0.60 r*/ra γ r* 1+ Δ γ+ Δr EAλ = a Δ +γ γ ⎛ r* ⎞ 1+ 0 .⎜ 226+ 0 .⎟ 004 γ+ Δ⎝ ra ⎠ CanCan thethe OO3 effecteffect onon ETET bebe modelledmodelled byby thisthis kindkind ofof relation?relation? r r* c=a +b ra ra * rc r O3=a +b O3 O3 ? ra ra FirstFirst attemptattempt onon soybeansoybean without O3 with O3 20 Without ozone rcO3/ra=1.05r*/ra+1.6 r2=0.77 a=0.96 b=0.4 16 r2=0.90 n=15 With ozone a r / 12 c r a=1.05 b=1.6 r2=0.77 n=11 8 rc/ra=0.96r*/ra+0.4 r2=0.90 4 4 8 12 16 20 r*/ra Promoting the O3 flux concept for European crops Håkan Pleijel Plant and Environmental Sciences Göteborg University Challenges - Crops • Production is the net result of a number of factors and practices including area under cultivation, fertilisation, agrochemicals etc • Productivity is the gain in relation to the investment • Ozone negatively affects productivity! • Ozone will influence productivity also in the absence of ”over-production” and subsidies Science-Policy relations Modelling Synthesis of Basic science systems Policy scientific data including IAM Activity of the scientific community A clear strategy is required Visible injury in tobaco From Fillella et al.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages388 Page
-
File Size-