Linear Algebraic Groups

Linear Algebraic Groups

Linear algebraic groups N. Perrin November 9, 2015 2 Contents 1 First definitions and properties 7 1.1 Algebraic groups . .7 1.1.1 Definitions . .7 1.1.2 Chevalley's Theorem . .7 1.1.3 Hopf algebras . .8 1.1.4 Examples . .8 1.2 First properties . 10 1.2.1 Connected components . 10 1.2.2 Image of a group homomorphism . 10 1.2.3 Subgroup generated by subvarieties . 11 1.3 Action on a variety . 12 1.3.1 Definition . 12 1.3.2 First properties . 12 1.3.3 Affine algebraic groups are linear . 14 2 Tangent spaces and Lie algebras 15 2.1 Derivations and tangent spaces . 15 2.1.1 Derivations . 15 2.1.2 Tangent spaces . 16 2.1.3 Distributions . 18 2.2 Lie algebra of an algebraic group . 18 2.2.1 Lie algebra . 18 2.2.2 Invariant derivations . 19 2.2.3 The distribution algebra . 20 2.2.4 Envelopping algebra . 22 2.2.5 Examples . 22 2.3 Derived action on a representation . 23 2.3.1 Derived action . 23 2.3.2 Stabilisor of the ideal of a closed subgroup . 24 2.3.3 Adjoint actions . 25 3 Semisimple and unipotent elements 29 3.1 Jordan decomposition . 29 3.1.1 Jordan decomposition in GL(V ).......................... 29 3.1.2 Jordan decomposition in G ............................. 30 3.2 Semisimple, unipotent and nilpotent elements . 31 3.3 Commutative groups . 32 3.3.1 Diagonalisable groups . 32 3 4 CONTENTS 3.3.2 Structure of commutative groups . 33 4 Diagonalisable groups and Tori 35 4.1 Structure theorem for diagonalisable groups . 35 4.1.1 Characters . 35 4.1.2 Structure Theorem . 36 4.2 Rigidity of diagonalisable groups . 38 4.3 Some properties of tori . 39 4.3.1 Centraliser of Tori . 39 4.3.2 Pairing . 39 5 Unipotent and sovable groups 41 5.1 Definitions . 41 5.1.1 Groups . 41 5.1.2 Lie algebras . 42 5.1.3 Upper triangular matrices . 42 5.2 Lie-Kolchin Theorems . 42 5.2.1 Burnside and Wederburn Theorem . 42 5.2.2 Unipotent groups . 43 5.2.3 Solvable groups . 43 5.3 Structure Theorem . 44 5.3.1 Statement of the existence of quotients . 44 5.3.2 Structure Theorem . 45 6 Quotients 51 6.1 Differentials . 51 6.1.1 Module of K¨ahlerdifferentials . 51 6.1.2 Back to tangent spaces . 54 6.2 Separable morphisms . 55 6.2.1 Separable and separably generated extensions . 55 6.2.2 Smooth and normal varieties . 58 6.2.3 Separable and birational morphisms . 58 6.2.4 Application to homogeneous spaces . 61 6.2.5 Flat morphisms . 62 6.3 Quotients . 62 6.3.1 Chevalley's semiinvariants . 62 7 Borel subgroups 67 7.1 Borel fixed point Theorem . 67 7.1.1 Reminder on complete varieties . 67 7.1.2 Borel fixed point Theorem . 68 7.2 Cartan subgroups . 69 7.2.1 Borel pairs . 69 7.2.2 Centraliser of Tori, Cartan subgroups . 70 7.2.3 Cartan subgroups . 71 7.3 Normalisers of Borel subgroups . 74 7.4 Reductive and semisimple algebraic groups . 74 7.4.1 Radical and unipotent radical . 74 7.4.2 Reductive and semisimple algebraic groups . 75 CONTENTS 5 8 Geometry of the variety of Borel subgroups 77 8.1 The variety of Borel subgroups . 77 8.2 Action of a torus on a projective space . 79 8.3 Cartan subgroups of a reductive group . 80 9 Structure of reductive groups 85 9.1 First definitions and results . 85 9.1.1 Examples . 85 9.1.2 Root datum . 85 9.2 Centraliser of semisimple elements . 87 9.3 Structure theorem for reductive groups . 88 9.4 Semisimple groups of rank one . 89 9.4.1 Rank one and PGL2 ................................. 89 9.4.2 Groups of semisimple rank one . 91 9.5 Structure Theorem . 93 9.5.1 Root datum of a reductive group . 93 9.5.2 Weyl group . 95 9.5.3 Subgroups normalised by T ............................. 97 9.5.4 Bialynicki-Birula decomposition and Bruhat decomposition . 100 9.6 Structure of semisimple groups . 104 10 Representations of semisimple algebraic groups 107 10.1 Basics on representations . 107 10.2 Parabolic subgroups of G .................................. 109 10.2.1 Existence of maximal parabolic subgroups . 109 10.2.2 Description of all parabolic subgroups . 110 10.3 Existence of representations . 112 11 Uniqueness and existence Theorems, a review 115 11.1 Uniqueness Theorem . 115 11.1.1 Structure constants . 115 11.1.2 The elements nα ................................... 116 11.1.3 Presentation of G ................................... 117 11.1.4 Uniqueness of structure constants ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    121 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us