Finding Optimal Solutions for Covering and Matching Problems

Finding Optimal Solutions for Covering and Matching Problems

Finding Optimal Solutions for Covering and Matching Problems Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Fakult¨at fur¨ Mathematik und Informatik der Friedrich-Schiller-Universit¨at Jena von Dipl.-Inform. Hannes Moser geboren am 18.11.1978 in Munchen¨ Gutachter Prof. Dr. Rolf Niedermeier (Friedrich-Schiller-Universit¨at Jena) • Prof. Dr. Iyad Kanj (DePaul University, Chicago, U.S.A.) • Prof. Dr. Dimitrios Thilikos (National and Kapodistrian University of Athens, • Griechenland) Tag der ¨offentlichen Verteidigung: 17. November 2009 Zusammenfassung Diese Arbeit besch¨aftigt sich mit kombinatorischen Problemen, welche als Verall- gemeinerungen der beiden klassischen Graphprobleme Vertex Cover und Ma- ximum Matching aufgefasst werden k¨onnen. Das Vertex Cover-Problem ist wie folgt definiert. Gegeben ein ungerichteter Graph, finde eine kleinstm¨ogliche Knotenteilmenge, die jede Kante abdeckt“, d.h. dass einer der beiden Endpunkte ” jeder Kante in der Knotenteilmenge liegt. Dieses Problem wird auch oft Kno- ” tenuberdeckungsproblem“¨ genannt. Das Maximum Matching-Problem fragt nach einer gr¨oßtm¨oglichen Kantenteilmenge in einem ungerichteten Graphen, so dass sich die gew¨ahlten Kanten keinen Endpunkt teilen. Dieses Problem sucht also nach einer m¨oglichst großen Anzahl von Knotenpaaren, die durch eine Kante verbunden sind. In bipartiten Graphen wird dieses Problem auch oft Heirats- ” problem“ genannt. Sowohl Vertex Cover als auch Maximum Matching haben eine lange Geschichte; diese Probleme wurden schon in den Anfangsjahren der Informa- tik untersucht und sind immer noch Gegenstand der aktuellen Forschung. Es gibt fur¨ beide Probleme viele Anwendungen, beispielsweise in der Bioinformatik, der Computer-Chemie oder auch in der Verkehrsplanung. Maximum Matching wird in unz¨ahligen Anwendungen als Hilfsroutine zur L¨osung anderer Aufgaben eingesetzt. Ein fundamentaler Unterschied von Vertex Cover und Maximum Mat- ching ist ihre algorithmische Komplexit¨at: w¨ahrend Maximum Matching in Polynomzeit l¨osbar ist, was ublicherweise¨ als effizient angesehen wird, ist Ver- tex Cover NP-schwer. Das bedeutet, dass es vermutlich keinen Polynomzeital- gorithmus fur¨ Vertex Cover gibt. Beide Probleme haben aber auch Gemein- samkeiten, die sich in der beiden Problemen zugrundeliegenden Struktur Kante“ ” widerspiegeln. Tats¨achlich liegt diesen Gemeinsamkeiten auch ein beruhmtes¨ Er- gebnis von K¨onig zugrunde, welches besagt, dass Vertex Cover und Maximum Matching in bipartiten Graphen ¨aquivalent sind und damit Vertex Cover in bipartiten Graphen ebenfalls in Polynomzeit l¨osbar ist. Die Probleme, die in dieser Arbeit untersucht werden, lassen sich grob in Kno- tenuberdeckungsprobleme¨ und generalisierte Matching-Probleme unterteilen. Die Knotenuberdeckungsprobleme¨ k¨onnen wie folgt beschrieben werden. Fur¨ eine be- stimmte Grapheigenschaft und gegebenem Graph, l¨osche m¨oglichst wenige Kno- ten, so dass der resultierende Graph die besagte Grapheigenschaft besitzt. Ver- tex Cover entspricht diesem Problem mit Grapheigenschaft kantenfrei“. Wir ” formulieren also die Knotenuberdeckungsprobleme¨ als Knotenl¨oschungsprobleme, d.h. statt eine gewisse Struktur (wie z.B. Kanten) zu uberdecken,¨ sprechen wir von der Zerst¨orung der Struktur mit Hilfe von Knotenl¨oschungen. Die Matching- iii iv Zusammenfassung Probleme k¨onnen wie folgt beschrieben werden. Gegeben sei ein ungerichteter Graph. Finde eine gr¨oßtm¨ogliche Anzahl von Kopien eines fest vorgegebenen zu- • sammenh¨angenden Graphen mit mindestens drei Knoten, die paarweise knotendisjunkt sind. Finde eine gr¨oßtm¨ogliche Anzahl von Kanten, die paarweise einen gewissen • Mindestabstand haben mussen.¨ Diese Probleme sind alle NP-schwer, d.h. es kann vermutlich keine Polynomzeital- gorithmen zum Finden einer optimalen L¨osung geben. Doch auch fur¨ NP-schwere Probleme k¨onnen oft positive Resultate erzielt werden. Eine M¨oglichkeit sind Heuristiken, die oft bei bestimmten Instanzen in der Praxis sehr gute L¨osungen liefern, deren Laufzeiten und/oder L¨osungsguten¨ aber nicht bewiesen werden k¨onnen. Eine weitere Herangehensweise sind Approximationsalgorithmen, wel- che in Polynomzeit eine L¨osung finden, die nur um einen beweisbaren Faktor von einer optimalen L¨osung abweicht. Die Probleme, die in dieser Arbeit behandelt werden, sind jedoch alle im besten Fall nur mit einem konstanten Faktor appro- ximierbar, was in der Praxis oftmals nicht ausreichend ist. Eine weiterer Ansatz sind parametrisierte Algorithmen. Die Grundidee hierbei ist, die kombinatorische Komplexit¨at eines NP-schweren Problems nicht nur bezuglich¨ der Eingabegr¨oße zu analysieren, sondern auch einen geschickt gew¨ahlten Parameter mit in die Analyse einfließen zu lassen. Ein Problem ist festparameter-handhabbar bezuglich¨ eines Parameters k, wenn eine optimale L¨osung einer Instanz der Gr¨oße n in Zeit f(k) poly(n) gefunden werden kann. Die Idee dahinter ist, dass man fur¨ · Instanzen mit kleinem Parameter gute Laufzeiten erh¨alt, unabh¨angig von der Gesamtgr¨oße der Eingabeinstanz. Diese Arbeit besch¨aftigt sich im Wesentlichen mit diesem parametrisierten Ansatz. Ein wichtiges Konzept, um zu zeigen, dass ein parametrisiertes Problem festparameter-handhabbar ist, sind Problemkerne. Ein Problemkern ist grob gesagt eine in Polynomzeit konstruierbare Instanz, die zur Eingabeinstanz ¨aquivalent ist, aber deren Gr¨oße nur von dem Parameter (und nicht mehr von der Eingabegr¨oße) abh¨angig ist. Aus einer optimalen L¨osung fur¨ den Problemkern kann man dann eine optimale L¨osung fur¨ die Eingabeinstanz berechnen. Im Folgenden werden die Ergebnisse dieser Arbeit im Uberblick¨ be- schrieben. Bounded-Degree Vertex Deletion. Hierbei handelt es sich um das Problem, einen gegebenen Graph durch L¨oschen von maximal k Knoten in einen Graph mit konstantem Maximalgrad zu uberf¨ uhren.¨ Das wichtigste Ergebnis dazu ist ein Al- gorithmus, der in polynomieller Zeit zwei Knotenteilmengen berechnet, so dass man davon ausgehen kann, dass eine Knotenteilmenge immer in einer optimalen L¨osung ist, dass die andere von der Suche nach einer optimalen L¨osung ausge- schlossen werden kann, und dass eine optimale L¨osung fur¨ den Rest des Graphen Zusammenfassung v eine bestimmte Mindestgr¨oße besitzt. Dieses Ergebnis liefert einen Problemkern mit O(k1+ǫ) Knoten fur¨ ein beliebiges konstantes ǫ> 0. Weitere Ergebnisse sind ein parametrisierter Algorithmus mit der Laufzeit O((d +2)k + kn) und ein paar schnellere Algorithmen fur¨ einen Spezialfall des Problems. Weiterhin wird gezeigt, dass das Problem vermutlich nicht mehr festparameter-handhabbar bezuglich¨ Pa- rameter k ist, wenn der Maximalgrad des Zielgraphen Teil der Eingabe ist. Regular-Degree Vertex Deletion. Hierbei handelt es sich um das Problem, einen Graph durch L¨oschen von maximal k Knoten in einen regul¨aren Graph zu uberf¨ uhren.¨ Dieses Problem hat eine offensichtliche Ahnlichkeit¨ zu Bounded- Degree Vertex Deletion, verh¨alt sich aber aufgrund von hier nicht n¨aher erl¨auterten Eigenschaften in wesentlichen Aspekten deutlich anders. Fur¨ dieses Problem wird gezeigt, dass es NP-schwer und festparameter-handhabbar bezuglich¨ Parameter k ist. Das Hauptergebnis ist ein Problemkern mit O(k3) Knoten. Knotenl¨oschungsprobleme und iterative Kompression. Iterative Kompression ist eine im Jahr 2004 entwickelte Technik, die auf struktureller In- duktion und Kompression von Zwischenl¨osungen basiert. Diese Technik wurde in den letzten Jahren erfolgreich zur L¨osung von einigen jahrelang offenen Problemen eingesetzt. Fast alle diese Probleme sind Knotenl¨oschungsprobleme. In beinahe allen Anwendungen dieser Technik wird eine Kompressionsaufgabe gel¨ost, wel- che bei einer gegebenen Zwischenl¨osung nach einer davon disjunkten kleineren L¨osung fragt. Fur¨ eine große Klasse von Knotenl¨oschungsproblemen wird gezeigt, fur¨ welche F¨alle die Kompressionsaufgabe NP-schwer ist und fur¨ welche F¨alle sie in Polynomzeit gel¨ost werden kann. Fur¨ die in Polynomzeit l¨osbaren F¨alle ergibt sich daraus auch direkt ein effizienter Festparameter-Algorithmus fur¨ das entsprechende Knotenl¨oschungsproblem, unter anderem fur¨ einen Spezialfall des oben beschriebenen Bounded-Degree Vertex Deletion. Graph Packing. Bei diesem Problem geht es darum, in einem gegebenen Graph mindestens k knotendisjunkte Kopien eines festen Graphen H zu finden. Es wird zuerst ein Problemkern mit O(k2) Knoten fur¨ das Problem, mindestens k knotendisjunkte Dreiecke zu finden, gezeigt. Dieses Ergebnis verbessert ein be- kanntes Resultat und hat den Vorteil, dass es auf beliebige zusammenh¨angende h 1 Graphen H erweitert werden kann, was zu einem Problemkern mit O(k − ) Kno- ten fuhrt,¨ wobei h die Anzahl der Knoten in H ist. Induced Matching. Hier geht es darum, mindestens k Kanten zu finden, so dass sie paarweisen Abstand mindestens zwei haben. Bezuglich¨ des Para- meters k ist dieses Problem vermutlich nicht festparameter-handhabbar, daher wird die parametrisierte Komplexit¨at dieses Problems auf speziellen Graphklas- sen untersucht. Untersucht werden unter anderem planare Graphen, Graphen mit beschr¨anktem Knotengrad, bipartite Graphen und Graphen mit beschr¨ankter vi Zusammenfassung Baumweite. Das Hauptergebnis ist ein Problemkern der Gr¨oße O(k) in planaren Graphen. Maximum s-Plex. Bei diesem Problem geht es darum, in einem gegebenen Graph einen induzierten Teilgraph zu finden, in dem jeder Knoten zu maxi- mal s 1 anderen nicht benachbart ist. Dabei soll die Anzahl der Knoten in dem − Teilgraph

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    225 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us