Permutation Puzzles: a Mathematical Perspective Lecture Notes

Permutation Puzzles: a Mathematical Perspective Lecture Notes

Permutation Puzzles: A Mathematical Perspective 15 Puzzle, Oval Track, Rubik’s Cube and Other Mathematical Toys Lecture Notes Jamie Mulholland Department of Mathematics Simon Fraser University c Draft date May 7, 2012 Contents Contents i Preface ix Greek Alphabet xi 1 Permutation Puzzles 1 1.1 Introduction . .1 1.2 A Collection of Puzzles . .2 1.2.1 A basic game, let’s call it Swap ................................2 1.2.2 The 15-Puzzle . .4 1.2.3 The Oval Track Puzzle (or TopSpinTM)............................5 1.2.4 Hungarian Rings . .7 1.2.5 Rubik’s Cube . .8 1.3 Which brings us to the Definition of a Permutation Puzzle . 12 1.4 Exercises . 12 2 A Bit of Set Theory 15 2.1 Introduction . 15 2.2 Sets and Subsets . 15 2.3 Laws of Set Theory . 16 2.4 Examples Using Sage . 17 2.5 Exercises . 19 3 Permutations 21 3.1 Permutation: Preliminary Definition . 21 3.2 Permutation: Mathematical Definition . 23 3.2.1 Functions . 23 3.2.2 Permutations . 24 3.3 Composing Permutations . 26 i ii CONTENTS 3.4 Associativity of Permutation Composition . 28 3.5 Inverses of Permutations . 29 3.5.1 Inverse of a Product . 31 3.5.2 Cancellation Property . 32 3.6 The Symmetric Group Sn ........................................ 33 3.7 Rules for Exponents . 33 3.8 Order of a Permutation . 34 3.9 Exercises . 35 4 Permutations: Cycle Notation 37 4.1 Permutations: Cycle Notation . 37 4.2 Products of Permutations: Revisited . 39 4.3 Properties of Cycle Form . 40 4.4 Order of a Permutation: Revisited . 41 4.5 Inverse of a Permutation: Revisited . 42 4.6 Summary of Permutations . 44 4.7 Working with Permutations in Sage . 44 4.8 Exercises . 45 5 From Puzzles To Permutations 49 5.1 Introduction . 49 5.2 Swap ................................................... 50 5.3 15-Puzzle . 52 5.4 Oval Track Puzzle . 53 5.5 Hungarian Rings . 56 5.6 Rubik’s Cube . 58 5.6.1 2 × 2 × 2 Cube.......................................... 58 5.6.2 3 × 3 × 3 Cube.......................................... 59 5.7 Exercises . 60 6 Permutations: Products of 2-Cycles 65 6.1 Introduction . 65 6.2 Product of 2-Cycles . 66 6.3 Solvability of Swap . 67 6.4 Exercises . 68 7 Permutations: The Parity Theorem 69 7.1 Introduction . 69 CONTENTS iii 7.2 Variation of Swap . 71 7.3 Proof of the Parity Theorem . 72 7.3.1 Proof 1 of Claim 7.2 . 72 7.3.2 Proof 2 of Claim 7.2 . 74 7.4 Exercises . 77 8 Permutations: An and 3-Cycles 81 8.1 Swap Variation: A Challenge . 81 8.2 The Alternating Group An ....................................... 81 8.3 Products of 3-cycles . 83 8.4 Variations of Swap: Revisited . 85 8.5 Exercises . 86 9 Mastering the 15-Puzzle 89 9.1 Solvability Criteria . 89 9.2 Proof of Solvability Criteria . 91 9.3 Strategy for Solution . 94 9.4 Exercises . 95 10 Groups 101 10.1 Group: Definition . 101 10.1.1 Multiplication (Cayley) Table . 103 10.2 Some Everyday Examples of Groups . 103 10.3 Further Examples of Groups . 106 10.3.1 Symmetric and Alternating Groups . 106 10.3.2 Finite Cyclic Groups . 108 10.3.3 Group of Integers Modulo n: Cn ................................ 109 10.3.4 Group of Units Modulo n: U(n) ................................ 112 10.3.5 Dihedral Groups: Dn ...................................... 115 10.3.6 Notation for Dn ......................................... 117 10.4 Exercises . 118 11 Subgroups 123 11.1 Subgroups . 123 11.2 Examples of Subgroups . 124 11.3 The Center of a Group . 125 11.4 Lagrange’s Theorem . 126 11.5 Cyclic Groups Revisited . 127 iv CONTENTS 11.6 Cayley’s Theorem . 128 11.7 Exercises . 129 12 Puzzle Groups 133 12.1 Puzzle Groups . 133 12.2 Rubik’s Cube . 134 12.2.1 3-Cube Group . 134 12.2.2 2-Cube Group . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    300 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us