Classical Mechanics

Classical Mechanics

¨kyF®k yAkym Classical Mechanics (Introduction) Tdq 1 Tr Anh .As± Tr :An Xy ¨t Tywy Ty`ybW r¡w\ y bt ¨l§ Amy ¤AnF . , wk Tr ,r ªwqs ,Ty An¶Ak .Tr AbF rysf dh As³ Ah`R¤ ¨t A§r\nl ¨§CAt CwWt :As T`C Y Cwm @¡ ysq km§ §dq rO` Trtqm ryFAft LAnnF :(free fall) r ªwqs • §d yCA ¨lyA wlyA Am T§A Y (TyAwy ­CAS) . wk Tr TA` d` A Y TyÐAl wy wA ¨§CAt CwWt A`nF :(Newton's laws of motion) wyn Tr yw • , Az :¨ Tlmtm ¤ ,ywq £@¡ TAy} Ahyl dmt` ¨t y¡Afml .­wq ¤ ,Tr Tym ,TAW` ,rf T}A ºASf rJ ¤ }w Artqm lt xCdnF :(Astronomy) wk Tr • .TyÐAl wy wA LAnnF Ð d` . wk Tr y¡Afm {` Yl AnAmt¡ OnyF :(Beyond Newton) wy d` A • ,_Af³ yw : TykyF®k yAkym ¨ CwV ¨t TyFAF± .Tynq TKAn © AyA ¤ AyWF AnRr wkyF . wmk Anf`F - ¤AnF .(electromagnetism) TysVAn¤rhk w¡ rb± ¶A .wRwm @h ®A Cw PO -^ :¨¤rtk³ wm fO thm ¹CAql km§ https://plato.stanford.edu/contents.html .¨l§ Amy hn {`b rÐ tyF .ºAml` ¤ TfF®f {` Am Yl ®V² (Free Fall) r ªwqs 2 .TWs |C± Aqt³ Yl dmt` r ªwqsl Y¤± rysft A © Y At ¯¤ (natural) Ty`ybV Tr ¨¡ fF Y Yl ªwqsA ¨w |C± T§¤r C AA} d`§ ÐAs rysft @¡ k .rysf .(1) ®ym b A rq x As rq ¨w A®W ,Ð b |C± T§¤r TyAk §r³ TfF®f LA dq(1) .hnym z§z`t T ± {` wd ¤ , ®ym b 1 §dqt T`C± r}An` T§r\ Yl (Aristotle 384-322 BC) wWFC dmt dw ¨t As± w¡ @ d¶As Aqt³ A .r ªwqsl rysf ,(Air) ºwh ,(Water) ºAm :(3)r}An T`C §z ¨¡ (Earth) (2)|C± Yl TyFAF³ r}An` £@h wWFC YW .(Earth) Trt ¤ |C± ¤ ,(Fire) CAn :Tyr P¶AO Universe) wk zr £A ¨ AWqs§ Amhl` ºAm ¤ Trt T`ybV • .(Earth center) |C± zr ¢sf w¡ ©@ (center .(Heaven) ºAms w d`O§ Amhl` CAn ¤ ºwh T`ybV Aqm ¨ • sA .Ahbyr ¨ TyFAF± r}An` Tbsn As° Ty`ybW Tr l`t Hk` ¤ TbA ¨¡ Trt ¤ ºAm Tbs A |C± zr w Xqs§ AhE¤ FAnt As± ªwqF TrF wWFC dqt ,@¡ Y TAR .y} .Tfyf As± rF Xqs Tlyq As± :(weight) AJAqn \`m .r ªwqsl wWFC ­r\ HF ymlsm AAR Hm r@ .d` Amy Tsl Ah` An wkyF ¨t wk Tr w Cwmt A rq ¨w ,(Abu al-Fath Khazini) ¨EA tf w Am Aqm @¡ ¨ gravitational potential) TyÐAl TnAk TAW whf CwV y ,rK © A Am .A¡zr TAsm Aysk FAnt |C± TyÐA rt ¤ ,(energy .(weight) q ¤ (mass) Tltk y zyymt ¨ Abs A ¢ ryyt ¢Am ¤ (Galileo Galilei 1564-1642) ¨lyA wylyA CA\t Anyl A Ð y rk ¢yC dt ¨t ­CwWF± C .r ªwqs Ay An r\ TrF Ab³ (Leaning Tower of Piza) ¶Am zy r yflt yE¤ Yl` .Ð dt ¯ Twtkm ¢Am ¯ , EwA l`t ¯ r ªwqs w¤ Ab³ (thought experiment) Tylq` Trt wylyA m`tF ,Hk` r s r ªwqs xCd An y .¨ µA wWFC T§r\ ¨ {An Atyt An¡ .Tltk mh ySq ytVwr yflt yE¤ Ð y r :r ªwqsl wWFC T§r\ s Trt £@h Atnkm .rb± w¡ ¢E¤ ± ,¯¤ k s Xqs§ ,Th • .± ­rk ,q± ­rk Xqs ,«r Th • T}®A .T·VA Ahn AnqlW ¨t T§r\n Yl y Rw {Ant @¡ .« As± Ew l`t ¯ r ªwqs TrF » ¨¡ wylyA Tymt Am dtl Trt m`tF d wylyA A Ð A w wC¥m lt A ¢ dqt`§ ¨t (inclined surface) ¶Am ©wtsm Tr Anh .¢y }w r ªwqs TrF ryy ¶Am ©wtsm dtF ºC¤ dh A .Ah xAy ¯ r@t § . ªwqs ­d xAy `§ Am W Ahl` ¤ Yl ®V³ km§ Awl`m d§zm .TyA T Ð k @ z : Atk ¨ ¤± Of dn |C± CwOt Annkmy .T§wA ªAq ¨ Anwhf §r³ dn |C± whf lt§(2) .©w Ah® TyRC± ­rk Ah Yl §r³ .(Chemisty) ºAymyk Cw ¨ yOft º¨K T§r\n £@h w`nF(3) 2 http://www.arvindguptatoys.com/arvindgupta/ten-beautiful-experiments.pdf .r ªwqsl rysf Yl On wy Am r\tn Anyl y` k (Newton's Laws of Motion) Trl wy yw 3 rb TfF® ¤ yy¶A§zy ­d wh rA\ At ¨¡ Trl wy yw ¨ AFAbt³ lt ¤ TqyK TOq £@¡ w {` ¨ Qw b .§CAt Ansf r@ Aw ,A¡E¤A yy¶A§zyf Yl A ¨t Aw`O ¤ y¡Afm .§CAtl ArbF ¢yw dh Tr ¹ Abm (The Principles) ¹ Abm 1.3 ¤ ,¢tfyR¤ wA k .Trl yw T® (Newton 1642-1726) wy R¤ yqr ywq £@¡ QwO -¨l§ Amy- |r`nF .TlAkt Twm kK§ k .¢yn`§ A ¤ Ahn Tym¡ w Xys MAqn Ð (Principle of Inertia) TAW` wA 1.1.3 :T}A (frames) A` An r`§ ¢± TAW` wAq wyn ¤± wAq Yms§ .(Inertial frames) TyAW` A`m (Tm\tn Tyqts Tr ¤ wkF) ¢A Yl s © Yqb§ ,¨AW l` ¨» «.¨CA r¥ ¢yl r¥§ \In an inertial frame, an object either remains at rest or continues to move at a constant velocity −!v , unless acted upon by a force." ¤A Adn Annk .TyAW` A`m £@¡ ¨ kK Hf @ ºA§zyf ywq (time) zl A}A Awhf lWt Ah ^® TyAW` A`m £@¡ Ty¡A h ­r¡AZ © Xb r ¯ ¤ Ahsfn ­ ww TyAW` A`mA .(space) ºASf ¤ yqlW yAy Akm ¤ Az wy rbt ,A`m £@h CAV ºAW³ .Ty¶A§zy ¤ z whf CwW LAn Adn TWqn £@¡ Y w`nF .(absolute entities) .¨l§ Amy -(vacuum) rf T}A- ºASf perpetual) Tb¶d Tr w¡ ¤ ¯ r h whf Yl wAq @¡ ©wt§ Tr wn @¡ .Tm\tnm Tmyqtsm Tr ¨ Tlmtm ¤ (motion -d` Amy Ð «rnF Am- CwO` r Yl xAbt ¤ Amt¡ Rw A (The Second Law) ¨A wAq 2.1.3 .yAkyml ¨FAF± wAq ¨A dbm ¨W`§ 3 −! Tlt s Yl ­r¥m F TyCA «wq wm ©¤As§ ,¨AW l` ¨» «.−!a CAst rR m s @¡ −! \In an inertial frame, the vector sum of external forces \F " on an object is equal to the mass \m" of that object multiplied by its acceleration \−!a "". X −! d F = m · −!a = −!p : dt :¨¡ }± TAyO ¯ ¯¤d r± ¨¡ wAql TAyO £@¡ C −! Cdq s Yl ­r¥m F TyCA «wq wm ©¤As§ ,¨AW l` ¨» «.zl TbsnA s @¡ (momentum) Tr Tym ry k ,−!v ¢trF rR m s Tlt Ah Yl ­ A Tr Tym r` .yAkyml (Hamiltonian formulation) ¨wtlyAh }w m`ts§ ± §r`t ¤ ­wq :¨¡ wAq @¡ ¨ TyFAF± y¡Afm St§ TAyO £@¡ ® .Tr Tym wAq CAbt ,(mathematical formulas) TyRA§r TyO Y r\nA ,Annkm§ ¨FAF± bs A ­r\n £@¡ k .¨A wAq T}A TA ¤± ,r@ AnflF Am .(¤± wAq) }w @¡ ¢¶AW ¤ ¤± wAq TAyO .TyAW` A`ml §r` ºAW w¡ ¤± wAq dh (The Third Law) A wAq 3.1.3 .(equilibrium) Ew wA A wAq CAbt km§ « .£A ³ ¨ ¢sA`§ ¤ ­dK ¨ ¢§¤As§ ` C ` k » \When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in the direction on the first body." isolated) T¤z`m TykyAkym m TFC dn AyFAF C¤ wAq @¡ `l§ Yl r¥ ¯ ¨t m ¨¡ T¤z`m TykyAkym mA .(mechanical systems .{`b AhS` Yl r ¥ Ah Awk lt k ,¨CA XFw Ahyl r¥§ ¯ ¤ m ºAntF m £@¡ A§ km§ ¯ £® A wAq w¤ ¤db .(trivial systems) Tym¡± Tm§d` A` ¤ wslyf d§ Yl wAq @¡ TAyO ¯¤Am ¤ «d A «­ AS ­w ­r¥ ­w k » :A y .(Avempace 1095-1138) TA lsm d§ ¢nk .(\there is always a reaction force for every force exerted") .`fl A§¤As `f C A 4 (Force) ­wq 2.3 (Aristotle 384-322 BC) wWFC Y (external force) TyCA ­wq lWO w`§ :An} T® Y «wq s ©@ As± T`ybW l`t ¨t «wq ¨¡ ¤ :(Natural Forces) Ty`ybW «wq • T§¤Ams r± Tr ¤ (r ªwqs ­rq AV) r ªwqsA .(TysmK Twmm ­rq AV) (Heavenly Bodies) An¶Ak T`An «wq ¨¡ ¤ :(Spontaneous Forces) Ty¶Aqlt «wq • .(Living Orgamisms) Ty .«r± «wq ym ¨¡¤ :(External Forces) TyCA «wq • Ty¶Aqlt ¤ Ty`ybW «wq CAbt kmy .Tymst bF ysqt @¡ Ayl rh\§ .TyCA «wq Hk ,A º¨J T`A Ah± Tyl «w :(4)TyCA ­wq ryt ¨At }w wWFC YW −! Aysk ¤F TyCA ­wq ­dJ A§ rV TbFAtn −!v s TrF wk » .«ρ XFw TA ¤ m s E¤ \The speed \−!v " at which an object moves is proportional to the amount of −! force exerted on it \F " and inversly proportional to its weight \m" and the density of medium \ρ" through which it moves." :¨At kK Yl wWFC± Tr wA TAy} km§ −! m F = · −!v ρ :§r wAq TAy} ¨ Tbk rm ºAW± XC An`Fw ¤ ¨ Aqy z xAy k§ :(Time Measurement) z xAy • AV ,rytA ¢WC ©@ zl wWFC §r` Tl yW E A ¤ .wWFC .Awl`m d§zm zA T}A ­rqf As± Tr wWFC ^¯ :(Friction or Resistance) Akt³ • XC .s kJ @ ¤ ¢y rt ©@ (ºAm ¤ ºwh) XFwA l`t rysf d§ ¢nk ,(5)XFw TA ryt Y¤± T\®m wWFC CAq§ wWFC Cr ,­ry± TyAkJ³ Yl ltl .TyA T\®ml Yl rOt @¡ h km§ .¢sf kK Ð As Yl ­wq ry ­w w¤ ¨¡ T§d ­r\n .¢t`ybV ºz s kJ rbt wWFC .¢y rt§ ©@ XFw ¤ s y Akt .TyA`K r§ Aqm ¤d wAq @h wWFC TAy} wk km§(4) {` dqt`§ .Aqy Af§r` AhW`§ ¢ ¯ ¢nyw ¨ XFw TA m`tF wWFC C(5) .XFw (viscosity) T¤z dO ¢ yC¥m 5 ºAyJ±A A¡A§ yCAq ¢wA ¶At LAn ¤ wWFC PJ Pmqt Aw : wAq dqn TlyFw Tl·F rV Annkm§ .@ T¤r`m ?Tny` TynE ­dm ­wq r¥ Adn d§ ÐA - ?(vacuum) rf ¨ d§ ÐA - y AAm wt§ s -AnwA A®W- tnts hs ¶@q Tr TyAkJ dW} ¢nk wWFC w @¡ A .­wq ry wt§ |rt ,TyAkJ³ £@¡ .­wq ry ºAht C rmts ¨t (projectiles) xAmt³A r¥ ­wqA .ryt yWts ¨k XFw At ­wq wWFC (ºAm ¤) ºwh §rV Ahlq t§ ¤ ,A Ams s ¤ d Adn (contact) .Tf§@q TA ¨ £@¡ ¨ lO§ ¯ AnwA ± (dilemma) TlS` A ¨A ¥s An`S§ XF¤ w¤ Tyz As rt³ TyAkJ³ Hf AO .(ρ = 0) TA §@¡ rf Plt§ wWFC Cr .r¥ ­wq yWts ¨k £@h w`nF .(horror vacui) ®} ww ry ¢y TbsnA rfA .yAkJ³ .rf An§d dn TWqn Archimedes) xdymC A` Y TyCA ­wq TyRA§C TAy} ¤ w` @¡ wq§ .(Archimedes law of buoyancy) xdymC T` ¨¡¤ (287-212 BC .«zm ºAm q FAnt ­wq H§ ºAm ¨ Cwm s » wAq s ¤ z xAy ¯ TAn} dq wWFC wA wy rh\ d ¤ wm TA §r`t (yy¶Aymyk T}A) ºAml` Amt¡ Ð Yl E .Aht ry A l` Yf ©@ (Avempace 1095-1138) TA A` Anh .AhAs wA {qn (1080-1164) © db ¢l Tb¡ £r}A` A .XFw TAk ­wq Trs |w (acceleration) CAst FAnt ­wq A y wWFC dJC A .z Trs ry Cdq ¢ Yl CAst r ¤ .(speed) y HA`m £A ³ ¨ Tr wA Y r\nA (Averroes 1126-1198) TA ryyt E® m` Cdq Ah Yl Ahr y, ­wq x Ayq ¢lm`tF Anyl A ¢ ¯ wmlsm ºAml` ¢y ¡Ð A T} C ¤ .A s Tyr .¨A ¢wAq Tqyd TyRA§r TyO Tr`m wy CA\t Amh Awhf LAn Aw ,TAW`A Xb rm ¨At wRwm Y C¤rm b :¨At ¥sA ºd wyn ¨A wAq ¨ «?yAkym ¨ (£d ©@) (mass) Tltk y¡Af d » Tylq Tltk ¤ (inertial mass) TyAW` Tltk : Awhf w¡ ¢yl CA`tm w , wyn ¨A wAq ¨ rh\ ¨t ¨¡ TyAW` TltkA .(gravitational mass) wd §@ ¶¤± ºAml` ¤ .TyÐA ­wq rt ¨t ¨h Tylq Tltk A ªwqs TrF Am ¢nk .(Averroes 1126-1198) dJC TyAW` Tltk -Trl ¨A wAq Yl Amt- Q®tF Ankmy ,TltkA l`t ¯ r CAyt At§¤Ast Amhl` An`Fw ¤ .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us