Digital Subscriber Lines (Xdsl) Twisted-Pair Channel Modeling

Digital Subscriber Lines (Xdsl) Twisted-Pair Channel Modeling

Digital Subscriber Lines (xDSL) Twisted-pair channel modeling Heinz Koeppl Graz, 15.11.2001 [email protected] Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.1/29 Talk overview • Introduction to DSL (digital subscriber line) • Twisted-pair channel modeling • Transceiver front-end noise • Channel capacity • Hybrid circuits Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.2/29 Types of DSL • IDSN (integrated services digital networks) • Started 1985 at AT&T • Used bandwidth : 80 kHz • Basic rate ISDN transports 160 kb/s • loop length up to 18 kft (5.5 km) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.3/29 Types of DSL • HDSL (high bit-rate DSL) • Started 1988 at AT&T • Used bandwidth : 200 kHz • basic HDSL rate: 800 kb/s • loop length up to 12 kft (3.7 km) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.4/29 Types of DSL • ADSL (asymmetric DSL) • Started 1989 at Bellcore • Used bandwidth : 1 MHz • ADSL3: <9 Mb/s downstream, <1 Mb/s upstream • loop length up to 12 kft (3.7 km) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.5/29 Types of DSL • VDSL (Very-high-bit-rate DSL) • Started 1994 • Used bandwidth : 15 MHz • 52 Mb/s for <1 kft • 13 Mb/s for <12 kft Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.6/29 Subscriber loop environment • connects central office (CO) and end user • designed for 4 kHz voice band • ringing voltage up to 140 volts • Plain Old Telephone Service (POTS), analog phones • different wire gauge, installations (aerial,: : :) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.7/29 Bridged taps • open wire connected in parallel to loop • used for reaching future customers unterminated reflections • ! signal loss, distortions • ! • 80% of US loops have bridged taps Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.8/29 Loading coils • series inductor in twisted pair loop • used for extending beyond 18 kft • flattens frequency response across voice band • low pass filtering • blocks xDSL signals • 15% of US loops have loading coils Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.9/29 Talk overview • Introduction to DSL (digital subscriber line) • Twisted-pair channel modeling • Transceiver front-end noise Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.10/29 Two-port modeling • yields accurate results for DSL <20 MHz • loop consists of cascade of different wire types V1 A B V2 V2 (1) = = Φ " I1 # " C D # " I2 # " I2 # Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.11/29 Two-port modeling with V2 1 (2) T (f) = = I2 V1 A + B V2 and V2=V1 = Z2 = ZL the load impedance yields ZL (3) T (f) = AZL + B Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.12/29 Two-port modeling Transfer function H(f) VL(f) VL(f) V2(f) Z1 (4) = H(f) = = T (f) Vs(f) V2(f) VS(f) Z1 + ZS with Z1 = V1=I1, input impedance of two-port Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.13/29 Equivalent circuit deriving the ABCD parameters Figure 1: The transmission line equivalent ciruit. Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.14/29 Transmission line equation @v(z; t) @i(z; t) (5) = Ri(z; t) + L − @z @t @i(z; t) @v(z; t) (6) = Gv(z; t) + C − @z @t Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.15/29 Time harmonic equations with (7)v(z; t) = V (z)ej!t ; i(z; t) = I(z)ej!t < < dV (z) dI(z) = (R+j!L)I(z); = (G+j!C)V (z) − dz − dz (8) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.16/29 Time harmonic equations combining gives 2 2 d V (z) 2 d I(z) 2 (9) = γ V (z); = γ I(z) dz2 dz2 with (10)γ = α + jβ = (R + j!L)(G + j!C) = pZY p • frequency dependent propagation constant γ • attenuation constant α • phase constant β Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.17/29 Time harmonic equations Solutions are + γz γz + γz γz (11)V (z) = V0 e− + V0−e I(z) = I0 e− + I0−e : Characteristic impedance + V0 V0− R + j!L (12) Z0 = + = = I0 I0− sG + j!C Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.18/29 Matrix form for a given wire length d V (0) cosh(γd) Z0 sinh(γd) V (d) = 1 sinh(γd) cosh(γd) " I(0) # " Z0 # " I(d) # (13) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.19/29 Characteristic functions with V (d)=I(d) = ZL 1 (14) T = cosh(γd) + Z0 sinh(γd) ZL and input impedance V (0)=I(0) ZL + Z0 tanh(γd) (15) Z1 = Z0 Z0 + ZL tanh(γd) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.20/29 Characteristic functions Z1 (16) H(f) = T (f) Z1 + ZS and therefore Z0= cosh(γd) H(f) = Z0 Z0 ZS + tanh(γd) + Z0 1 + tanh(γd) ZL ZL (17) h i h i Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.21/29 Bridged taps 1 0 (18) Φ2 = " 1=Zbt 1 # when terminated with open circuit cosh(γd) (19) Z = Z0 bt t sinh(γd) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.22/29 Loading coils 1 j!Lcoil (20) Φcoil = " 0 1 # when terminated with open circuit cosh(γd) (21) Z = Z0 bt t sinh(γd) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.23/29 Overall two-port (22) Φ = Φ0Φ1 ΦN · · · and the source voltage divider is 1 ZS (23) Φ0 = " 0 1 # Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.24/29 RCLG are frequency dependent Approximate measurement fittings valid up to 20 MHz: • resistance R(f) = a + bpf d • inductance L(f) = c + pf conductance G(f) f • / • Capacitance is approximately constant Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.25/29 Talk overview • Introduction to DSL (digital subscriber line) • Twisted-pair channel modeling • Transceiver front-end noise Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.26/29 Transceiver front-end noise • Near end Cosstalk (NEXT) • Far end Crosstalk (FEXT) • Impulse noise (CO switching,...) Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.27/29 NEXT/FEXT • NEXT: Crosstalk between a receiving path and a transmitting path a DSL transceiver at the same end of two different subscriber loops • FEXT: crosstalk between a receiving path and a transmitting path a DSL transceiver at opposite ends of two different subscriber loops • can be modeled by Unger model Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.28/29 Useful links • Online book about DSL at www.paradyne.com • ADSL - forum www.adsl.com • Html-bases documentation of the talk http://snape.inw.tu-graz.ac.at/talks/dsl/ Digital Subscriber Lines (xDSL)Twisted-pair channel modeling – p.29/29.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us