The Eukaryotic Translation Initiation Factor 2, a Hero Turned Villain in Β Cells

The Eukaryotic Translation Initiation Factor 2, a Hero Turned Villain in Β Cells

The eukaryotic translation initiation factor 2, a hero turned villain in β cells By Baroj Abdulkarim Université libre de Bruxelles Faculty of Medicine ULB Center for Diabetes Research Academic year 2016-2017 Jury Members: Dr. Ingrid Langer (President) Dr. Miriam Cnop (Promoter and secretary) Dr. Mariana Igoillo Esteve (Co-Promoter) Dr. Daniel Christophe Dr. Christophe Erneux Dr. Claudine Heinrichs Dr. Amar Abderrahmani Dr. Patrick Gilon Dedicated to my daughter Elîn 2 Contents Papers constituting this thesis .................................................................................... 4 Abbreviations .............................................................................................................. 5 Abstract ...................................................................................................................... 8 Résumé ...................................................................................................................... 9 Introduction ............................................................................................................... 10 Diabetes mellitus ................................................................................................... 10 How β cells work ................................................................................................ 11 Type 2 and monogenic diabetes ........................................................................ 12 Free fatty acids and diabetes ................................................................................ 14 Acute exposure to FFAs: enhanced β cell function ............................................ 15 Prolonged exposure to saturated FFAs: Lipotoxicity-induced ER stress ............ 17 The unfolded protein response ....................................................................... 17 Dysregulation of PERK/eIF2α pathway in diabetes ..................................... 22 β cell apoptosis ............................................................................................... 24 The extrinsic pathway .................................................................................. 26 The intrinsic pathway ................................................................................... 26 Aims of this thesis ..................................................................................................... 29 Results...................................................................................................................... 30 PAPER I ................................................................................................................ 30 PAPER II ............................................................................................................... 48 PAPER III .............................................................................................................. 62 Discussion ................................................................................................................ 84 Diseases caused by dysregulated ER stress signaling ......................................... 88 Not only β cells ...................................................................................................... 88 Models of PERK/eIF2α pathway ........................................................................... 90 Treating ER stress ................................................................................................. 91 Conclusions and perspectives .................................................................................. 92 Acknowledgements .................................................................................................. 95 References ............................................................................................................... 96 Supplementary data ............................................................................................... 111 3 Papers constituting this thesis 1. Cnop M, Abdulkarim B, Bottu G, Cunha DA, Masini M, Turatsinze JV, Griebel T, Igoillo-Esteve M, Bugliani M, Villate O, Ladriere L, Marselli L, Marchetti P, McCarthy MI, Sammeth M, Eizirik DL; RNA-sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes, 2013, 63, 6, 1978-1993 2. Abdulkarim B, Nicolino M, Igoillo-Esteve M, Daures M, Romero S, Philippi A, Senée V, Lopes M, Cunha DA, Harding HP, Derbois C, Bendelac N, Hattersley AT, Eizirik DL, Ron D, Cnop M, Julier C; A Missense Mutation in PPP1R15B Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly. Diabetes. 2015, 64, 11, 3951-3962. 3. Abdulkarim B,Hernangomez M, Igoillo-Esteve M, Ladriere L, Cunha DA, Marselli L, Marchetti P, Eizirik DL, Cnop M; Guanabenz sensitizes β-cells to endoplasmic reticulum stress-induced apoptosis. Endocrinology, 2017, Epub ahead of print. 4 Abbreviations APAF1 Apoptotic protease activating factor 1 ATF Activating transcription factor BH Bcl2 homology Bad Bcl2 associated agonist of cell death Bak Bcl2 antagonist/killer Bax Bcl2 associated X protein Bcl2 B-Cell lymphoma 2 Bid BH3 interacting domain death agonist Bim Bcl2 interacting mediator of cell death BiP Immunoglobulin heavy chain binding protein cAMP Cyclic AMP CHOP CCAAT/enhancer binding protein homologous protein CPE carboxypeptidase E CReP Constitutive repressor of eIF2α phosphorylation DP5 Death protein 5 eIF Eukaryotic translation initiation factor EPAC Exchange factor directly activated by cAMP ER Endoplasmic reticulum ERAD ER associated degradation ERO1 ER oxidoreductase 1 FACS Fluorescent activated cell sorting FADD Fas-associated death domain protein FFA Free fatty acid GADD34 Growth arrest DNA damage inducible 34 GATA6 GATA binding protein 6 GCK Glucokinase GCN2 General control nonderepressible 2 GLP-1 Glucagon like peptide 1 Glut Glucose transporter HNF1A Hepatocyte nuclear factor 1 alpha HRI Heme regulated initiation IDF International diabetes federation 5 INS Insulin gene Ini-Met Initiator Methionine IRE1 Inositol requiring 1 ISR Integrated stress response ISRIB ISR inhibitor JNK c-Jun N-terminal kinase + KATP ATP sensitive K channel KCNJ11 Potassium voltage gated channel subfamily J member 11 LC8 Light chain 8 Mcl1 Myeloid cell leukemia sequence 1 MODY Maturity onset diabetes of the young NeuroD1 Neuronal differentiation 1 NDM Neonatal diabetes mellitus NO Nitric Oxide Noxa phorbol-12-myristate-13-acetate-induced protein 1 Nrf2 nuclear factor erythroid-2-related factor-2 NRSF Neuronal-restrictive silencer factor ORF Open reading frame P58IPK 58 kDa inhibitor of PKR PDX1 Pancreatic and duodenal homeobox 1 PERK PKR-like endoplasmic reticulum kinase PKA Protein kinase A PKR Protein kinase R PP1 Protein phosphatase 1 PPAR Peroxisome proliferator-activated receptor PUMA P53 upregulated modulator of apoptosis Rap1 Ras-related protein 1 RNA-seq RNA sequencing RRP Readily releasable pool SERCA Sarcoendoplasmic reticulum Ca2+ ATPase SNAP25 Synaptosomal-associated protein 25 SNARE SNAP receptor TIRF Total internal reflection fluorescence TRAF2 Tumor necrosis factor receptor- associated factor 2 6 Trib3 Tribblespseudokinase 3 uORF Upstream ORF UPR Unfolded protein response VDCC Voltage dependent Ca2+ channel VAMP Vesicle associated membrane protein WFS1 Wolfram syndrome 1 XBP1 X-box binding protein 1 7 Abstract The prevalence of type 2 diabetes is increasing dramatically worldwide. Type 2 diabetes is a major health and socio-economic burden. Genetic predisposition and the obesity epidemic, due to sedentary life style and high caloric food intake, are associated with development of type 2 diabetes. Circulating free fatty acids (FFAs), in particular saturated FFAs, are linked with insulin resistance and β cell dysfunction. Following this background we performed RNA sequencing of human pancreatic islets treated with the saturated FFA palmitate to acquire a global image of the islet response to this insult. We identified several stress pathways induced by palmitate with a major induction of the endoplasmic reticulum (ER) stress response. The ER stress response, in particular the PKR-like ER kinase (PERK) branch, has been shown to be induced by saturated FFA. It leads to increased β cell apoptosis both in fluorescence activated cell sorter (FACS) purified rat β cells and human islets. We further clarified the role of this pathway by studying the involvement of the constitutive repressor of eIF2α phosphorylation (CReP) in a monogenic form of diabetes. CReP is a repressor of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation. A direct target of PERK, eIF2α is involved in translational attenuation and induction of apoptosis. We have shown that CReP loss-of-function leads to a new syndrome of young onset diabetes, intellectual disability and microcephaly. The identified R658C mutation abrogated CReP activity leading to increased eIF2α phosphorylation and β cell apoptosis. To further demonstrate the importance of eIF2α dysregulation in β cell demise, we used guanabenz, a chemical inhibitor of growth arrest DNA damage inducible 34 (GADD34). GADD34 is an ER stress-induced repressor of eIF2α phosphorylation. Guanabenz potentiated FFA-mediated ER stress and apoptosis in clonal and primary rat β cells and in human islets through the activation of CCAAT/enhancer binding protein homologous protein (CHOP), downstream of eIF2α. Guanabenz administration in mice impaired glucose tolerance and led to β cell dysfunction. In ex vivo experiments guanabenz also induced β cell dysfunction

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    193 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us