Liquid-Mediated Solid-State Metathesis Reactions Daniel Morrison A thesis submitted to the University o f London in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry. University College, University of London London, United Kingdom September, 2001 ProQuest Number: U642239 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642239 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 L Abstract: A variety of metathetical reactions have been carried out in a liquid medium to explore the variety and depth of such reactions, A comparison with the similar solid-state reactions gives a clear indication of the differences and similarities between the two alternate routes. The fact that these reactions go to completion at all is interesting in that the conditions employed are very mild and do not employ any "forcing" means to induce reaction. Main group and transition metal sulphide, selenide and telluride and transition metal phosphide, arsenide and antimonide binary and ternary compounds were synthesised and characterised. An in-depth investigation into the synthesis and characterisation of the chalcopyrite CuInEj (E = S, Se, Te) family of ternary compounds has also been carried out with a specific focus on liquid variation, reaction duration and temperature and annealing treatment. Solid-state metathesis synthesis of CuInEj was also carried out for comparison purposes. The main conclusions drawn from the use of the liquid-mediated metathesis methodology are that the reactions, for the most part, go to completion and produce single-phase products. Reactions require a much lower temperature and take much longer to go to completion as compared with the solid-state metathesis method. The majority of the products are X-ray amorphous before being subjected to annealing, and crystallinity can be induced under relatively mild conditions and with good control of crystallinity level. Product particle size is significantly reduced both before and after annealing. I suppose that when the bees crowd round the flowers it is for the sake o f honey that they do so, never thinking that it is the dust which they are carrying from flower to flower which is to render possible a more splendid array offlowers, and a busier crowd of bees, in the years to come. We cannot, therefore, do better than improving the shining hour in helping forward the cross-fertilisation of the sciences. Lecture given at Cambridge, May 14, 1878 while directing a demonstration o f the telephone James Clerk Maxwell Distinguished Professor of Experimental Physics Cambridge University IL Table of Contents: Section________________________________________________________ Page Number I. Abstract ....................................................................................................................... 2 n. Table of Contents........................................................................................................4 m. List of Figures ............................................................................................................ 8 IV. List of Tab les.......................................................................................................... 11 Y. List of Abbreviations............................................................................................ 12 VI. Acknowledgements ............................................................................................... 13 1. Introduction............................................................................................................ 14 1.1 Preamble .................................................................................................. 14 1.2 Combustion Synthesis............................................................................ 15 1.3 Metathesis Reactions.............................................................................. 18 1.4 Solid-State Metathesis Reactions........................................................... 19 1.4.1 General Introduction .................................................................. 19 1.4.2 Theory ............................................................................................ 21 1.4.3 Previous W ork ...............................................................................23 1.4.4 Drawbacks......................................................................................25 1.5 Liquid-Mediated Metathesis ....................................................................27 1.5.1 General Introduction ....................................................................27 1.5.2 Previous W ork ...............................................................................29 1.5.3 Final W ord ......................................................................................35 1.6 Solid-Liquid Metathesis .............................................................................36 1.7 Other Metathesis-like Reactions ............................................................. 37 1.8 Nanoparticulates ....................................................................................... 39 1.9 Introduction Conclusions.......................................................................... 41 2. Metal Chalcogenides...............................................................................................42 4 2.1 Introduction................................................................................................. 42 2.1.1 Thin Films ..................................................................................... 42 2.1.2 Bulk M aterials...............................................................................43 2.2 Results - Synthesis and Characterisation.................................................46 2.2.1 First Row Transition Metals - Titanium, Vanadium, Iron, Cobalt & N ick el......................................................................................... 46 2.2.1.1 X R D D ata........................................................................46 2.2.1.2 ED AX Data..................................................................... 47 2.2.1.3 Particle Morphology & Sizes ...................................... 49 2.2.2 Group 11 - Copper & Silver ........................................................ 50 2.2.3 Group 12 - Zinc, Cadmium & Mercury..................................... 54 2.2.4 Group 13 - Indium ........................................................................59 2.2.5 Group 14 - Tin & Lead ...............................................................62 2.2.6 Group 15 - Antimony & A rsenic ............................................... 67 2.3 Discussion ................................................................................................... 70 2.3.1 Nature of Reactants and L iquid.................................................. 70 2.3.2 Reaction Speed...............................................................................71 2.3.3 Reaction Pathway and Completion ............................................71 2.3.4 Crystallinity....................................................................................73 2.3.5 Crystallite S iz e s .............................................................................74 2.3.6 Annealing & Crystallite Size Control ....................................... 74 2.3.7 Redox Chemistry & Phase Control ............................................79 2.3.8 Mixed Temaiy Chalcogenides.....................................................80 2.3.9 Transition M etals...........................................................................82 2.3.10 Comparison with Liquid Ammonia M etathesis........................84 2.4 Precursor Synthesis .................................................................................... 86 2.4.1 Ampoule Synthesis .......................................................................86 2.4.2 Toluene Reflux Synthesis ............................................................88 5 2.5 Experimental .............................................................................................. 91 2.5.1 Reaction Methodology................................................................ 91 2.5.2 X-ray Powder Diffraction ..........................................................92 2.5.3 Infra-red Spectroscopy ................................................................ 92 2.5.4 Raman Microscopy .....................................................................92 2.5.5 Ultraviolet / Visible Spectroscopy ............................................ 93 2.5.6 Annealing / H eating .................................................................... 93 2.5.7 Scanning Electron Microscopy .................................................93 2.5.8 Energy-Dispersive Analysis by X-rays ................................... 93 2.5.9 Glassware...................................................................................... 94 2.5.10 Solvents .......................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages168 Page
-
File Size-