Arithmetical Hierarchy

Arithmetical Hierarchy

Arithmetical Hierarchy Peter Mayr Computability Theory, February 26, 2021 DTM vs functions onN For a partial functionf write � f(x) ifx is in the domain off; ↓ � f(x) ifx is not in the domain off. ↑ ϕe (x):N p N is computed by the DTM with Goedel numbere → Facts � A N k is computably enumerable iffA is the domain of some ⊆ partial recursive function. � A N k is computable iff the characteristic function ofA is ⊆ recursive. � The Diagonal Halting Problem K := x N:ϕ x (x) { ∈ ↓} is c.e. but not computable. Properties of recursive functions are not computable Rice’s Theorem LetC be a class ofk-ary recursive functions. Then e N:ϕ e C is computable iffC= orC is the class of all { ∈ ∈ } ∅ k-ary recursive functions. Example None of the following are computable: � K := x N:ϕ x (x) { ∈ ↓} � F := x N:ϕ x hasfinite domain { ∈ } � T := x N:ϕ x is total { ∈ } The arithmetical hierarchy of subsets ofN Idea: Classify problems that are not computable by the complexity of formulas that describe them. Example (Diagonal halting problemK) x Kiffϕ (x) ∈ x ↓ iff y(config(x,x,y)) =t ∃ 0 computable predicate �stating computation�� � halts after y steps Definition LetP(¯x)beak-ary predicate onN,n N: ∈ 0 � P isΣ n if there is a computable predicateR: P(¯x) y y y ... / y :R(¯x,¯y) ≡ ∃ 1∀ 2∃ 3 ∃ ∀ n n alternating quantifiers starting with ∃ 0 � �� � � P isΠ n if there is a computable predicateR: P(X) y y y ... / y :R(¯x,¯y) ≡ ∀ 1∃ 2∀ 3 ∃ ∀ n n alternating quantifiers starting with ∀ 0 0 � �� � � Σ0 =Π 0 = computable predicates � Δ0 :=Σ 0 Π 0 n n ∩ n Note The superscript 0 denotes quantification over type-0-objects (elements inN). Example 0 1. K isΣ 1 2. T= e N:ϕ e is total { ∈ } e Tiff xϕ (x) ∈ ∀ e ↓ iff x y(config(e,x,y)) =t ∀ ∃ 0 0 HenceT isΠ 2. 3. F= e N:ϕ e hasfinite domain { ∈ } e Fiff z y x(config(e,x,y)) =t x z ∈ ∃ ∀ ∀ 0 ⇒ ≤ 0 HenceF isΣ 2. Arithmetical hierarchy 0 0 n N Σn = n N Πn (sets defined infirst order arithmetic, ∈ ∈ hence called arithmetical) � � . 0 0 Σ2 Π2 0 Δ2 0 0 Σ1 Π1 0 Δ1 Question Are all subsets ofN arithmetical? Closure properties For proving the previous picture we need some preparation. Lemma Letn 1. ≥ 0 0 1. Σn is closed under existential quantification,Π n is closed under universal quantification. 2. Σ0,Π 0 are both closed under , , bounded quantifiers n n ∧ ∨ x<y, x<y, and substitution of total computable ∀ ∃ functions. 3. Σ0 =Π 0, Π 0 =Σ 0 ¬ n n ¬ n n Proof sketch. LetR be computable,P(x,z)= y y ...R(x,z,y ,...) beΣ 0. ∃ 1 ∀ 2 1 n 1. Claim:Q(x) := z P(x,z) isΣ 0 ∃ n Q(x) z y y ...R(x,z,y ,y ,...,y ) ≡∃ ∃ 1 ∀ 2 1 2 n u y ...R(x,(u) ,(u) ,y ...,y ) ≡ ∃ ∀ 2 0 1 2 n Dual argument for andΠ 0. ∀ n 2. Substitution: Letf(x) total, computable. 0 Claim:Q(x) :=P(x,f(x)) isΣ n Q(x) y y ...R(x,f(x),y ,y ,...) ≡∃ 1 ∀ 2 1 2 computable sinceR is Conjunction: Induct� onn (HW).�� � 3. Negation: immediate. 0 Σ1 is computably enumerable Normal Form Theorem for c.e. sets 0 P is c.e. iffP isΣ 1. Proof : LetP N k be c.e. ⇒ ⊆ (k) � ThenP= domainϕ e for somee (HW). � x Piffϕ e (x) ∈ ↓ iff n(config(e,x,n)) =t ∃ 0 =:ϕe,n (x) ↓ 0 � P isΣ because the predicateϕ e,n (x) (“M e computes 1 � �� � ↓ ϕe (x) inn steps”) is computable. : LetP(x) y R(x,y) forR computable. ⇐ ≡∃ � Thenψ(x) :=µy R(x,y) is recursive. � P= domainψ is c.e. 0 DuallyΠ 1 is co-c.e. 0 UniversalΣ n predicates 0 0 Idea: Enumeratek-aryΣ n predicates by a singlek + 1-aryΣ n predicate. Definition 0 0 Ak + 1-aryΣ n predicateU(e,x) is universalΣ n fork-ary predicates if 0 1. U(e,x) isΣ n 0 2. for everyk-aryΣ n predicateP(x) there is somee such that P(x) U(e,x) ≡ 0 UniversalΠ n-predicates are defined similarly. Example From the last proofU(e,x) := nϕ (x) is universalΣ 0. ∃ e,n ↓ 1 Enumeration Theorem For allk,n 1, universalΣ 0- andΠ 0-predicates exist. ≥ n n Proof by induction onn andk: Base case:U(e,x) := nϕ (x) is universalΣ 0 by the Normal ∃ e,n ↓ 1 Form Theorem for c.e. predicates. Note: IfU(e,x) is universalΣ 0, then U(e,x) is universalΠ 0 n ¬ n (and conversely). 0 Induction step: LetU(e,y,¯x) be universalΣ n fork + 1-ary predicates. Then y U(e,y,¯x) is universalΠ 0 fork-ary predicates since ∀ n+1 0 1. it is inΠ n+1 and 0 2. for everyk-aryΠ n+1-predicateP(¯x) there exists ak + 1-ary 0 Σn-predicateQ(y,¯x) such that P(¯x)= y Q(y,¯x) ∀ The arithmetical hierarchy does not collapse Corollary For eachn 1 there existΣ 0-predicates that are notΠ 0 (and ≥ n n conversely). Proof. 0 � LetU n(e,x) a unary universalΣ n-predicate. 0 � ThenK n(x) :=U n(x,x) isΣ n. 0 0 � Seeking a contradiction, supposeK n isΠ . Then K isΣ . n ¬ n � Hence K n(x) U n(e,x) for somee. ¬ ≡ � Contradiction forx=e..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us